forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathblock_clockless.h
232 lines (189 loc) · 7.24 KB
/
block_clockless.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#ifndef __INC_BLOCK_CLOCKLESS_H
#define __INC_BLOCK_CLOCKLESS_H
#include "controller.h"
#include "lib8tion.h"
#include "led_sysdefs.h"
#include "delay.h"
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Base template for clockless controllers. These controllers have 3 control points in their cycle for each bit. The first point
// is where the line is raised hi. The second pointsnt is where the line is dropped low for a zero. The third point is where the
// line is dropped low for a one. T1, T2, and T3 correspond to the timings for those three in clock cycles.
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#define PORT_MASK 0x77EFF3FE
#define SKIPLIST ~PORT_MASK
#if defined(__SAM3X8E__)
#define HAS_BLOCKLESS 1
template <int NUM_LANES, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int WAIT_TIME = 50>
class BlockClocklessController : public CLEDController {
typedef typename FastPinBB<1>::port_ptr_t data_ptr_t;
typedef typename FastPinBB<1>::port_t data_t;
CMinWait<WAIT_TIME> mWait;
uint32_t *m_pBuffer;
void transformData(uint8_t *leddata, int num_leds, uint8_t scale = 255) {
if(m_pBuffer == NULL) {
m_pBuffer = (uint32_t*)malloc(4 * 8 * 3 * num_leds);
}
uint32_t *outputdata = m_pBuffer;
for(register int i = 0; i < num_leds; i++) {
register byte rgboffset = RGB_BYTE0(RGB_ORDER);
for(int rgb = 0; rgb < 3; rgb++) {
register uint32_t mask = 0x01; // 0x01;
register uint32_t output[8] = {0,0,0,0,0,0,0,0};
// set the base address to skip through
uint8_t *database = leddata + (3*i) + rgboffset;
for(int j = 0; j < NUM_LANES; j++) {
register uint8_t byte = ~scale8(*database, scale);
if(byte & 0x80) { output[0] |= mask; }
if(byte & 0x40) { output[1] |= mask; }
if(byte & 0x20) { output[2] |= mask; }
if(byte & 0x10) { output[3] |= mask; }
if(byte & 0x08) { output[4] |= mask; }
if(byte & 0x04) { output[5] |= mask; }
if(byte & 0x02) { output[6] |= mask; }
if(byte & 0x01) { output[7] |= mask; }
// SKIPLIST is a 32 bit constant that contains the bit positions that are off limits, courtesy of port stupidities
do { mask <<= 1; } while(SKIPLIST & mask);
// move the data pointer forward a lane
database += (num_leds * 3);
// cycle between rgb ordering according to RGB order set (may need per-lane rgb ordering? ugh ugh ugh, i hope not!)
rgboffset = (rgboffset == RGB_BYTE0(RGB_ORDER)) ? RGB_BYTE1(RGB_ORDER) : (rgboffset == RGB_BYTE1(RGB_ORDER) ? RGB_BYTE2(RGB_ORDER) : RGB_BYTE0(RGB_ORDER));
// copy data out
for(int j = 0; j < 8; j++) { *outputdata++ = output[j]; }
}
}
}
}
public:
virtual void init() {
//FastPinBB<DATA_PIN>::setOutput();
uint8_t pins[] = { 33, 34, 35, 36, 37, 38, 39, 40, 41, 51, 50, 49, 48, 47, 46,45, 44, 9, 8, 7, 6, 5, 4, 3, 10, 72, 0 };
int i = 0;
while(pins[i]) { pinMode(pins[i++], OUTPUT); }
m_pBuffer = NULL;
}
virtual void clearLeds(int nLeds) {
showColor(CRGB(0, 0, 0), nLeds, 0);
}
// set all the leds on the controller to a given color
virtual void showColor(const struct CRGB & data, int nLeds, uint8_t scale = 255) {
mWait.wait();
cli();
SysClockSaver savedClock(T1 + T2 + T3);
// showRGBInternal<0, false>(nLeds, scale, (const byte*)&data);
// Adjust the timer
long microsTaken = nLeds * CLKS_TO_MICROS(24 * (T1 + T2 + T3));
MS_COUNTER += (microsTaken / 1000);
savedClock.restore();
sei();
mWait.mark();
}
virtual void show(const struct CRGB *rgbdata, int nLeds, uint8_t scale = 255) {
transformData((uint8_t*)rgbdata, nLeds, scale);
mWait.wait();
cli();
SysClockSaver savedClock(T1 + T2 + T3);
// FastPinBB<DATA_PIN>::hi(); delay(1); FastPinBB<DATA_PIN>::lo();
showRGBInternal<0, true>(nLeds);
// Adjust the timer
long microsTaken = nLeds * CLKS_TO_MICROS(24 * (T1 + T2 + T3));
MS_COUNTER += (microsTaken / 1000);
savedClock.restore();
sei();
mWait.mark();
}
#ifdef SUPPORT_ARGB
virtual void show(const struct CARGB *rgbdata, int nLeds, uint8_t scale = 255) {
transformData((uint8_t*)rgbdata, nLeds, scale);
mWait.wait();
cli();
SysClockSaver savedClock(T1 + T2 + T3);
showRGBInternal<1, true>(nLeds, scale, (const byte*)rgbdata);
// Adjust the timer
long microsTaken = nLeds * CLKS_TO_MICROS(24 * (T1 + T2 + T3));
MS_COUNTER += (microsTaken / 1000);
savedClock.restore();
sei();
mWait.mark();
}
#endif
// I hate using defines for these, should find a better representation at some point
#define _CTRL CTPTR[0]
#define _LOAD CTPTR[1]
#define _VAL CTPTR[2]
__attribute__((always_inline)) static inline void wait_loop_start(register volatile uint32_t *CTPTR) {
__asm__ __volatile__ (
"L_%=: ldr.w r8, [%0]\n"
" tst.w r8, #65536\n"
" beq.n L_%=\n"
: /* no outputs */
: "r" (CTPTR)
: "r8"
);
}
template<int MARK> __attribute__((always_inline)) static inline void wait_loop_mark(register volatile uint32_t *CTPTR) {
__asm__ __volatile__ (
"L_%=: ldr.w r8, [%0, #8]\n"
" cmp.w r8, %1\n"
" bhi.n L_%=\n"
: /* no outputs */
: "r" (CTPTR), "I" (MARK)
: "r8"
);
}
__attribute__((always_inline)) static inline void mark_port(register data_ptr_t port, register int val) {
__asm__ __volatile__ (
" str.w %0, [%1]\n"
: /* no outputs */
: "r" (val), "r" (port)
);
}
#define AT_BIT_START(X) wait_loop_start(CTPTR); X;
#define AT_MARK(X) wait_loop_mark<T1_MARK>(CTPTR); { X; }
#define AT_END(X) wait_loop_mark<T2_MARK>(CTPTR); { X; }
// #define AT_BIT_START(X) while(!(_CTRL & SysTick_CTRL_COUNTFLAG_Msk)); { X; }
// #define AT_MARK(X) while(_VAL > T1_MARK); { X; }
// #define AT_END(X) while(_VAL > T2_MARK); { X; }
//#define AT_MARK(X) delayclocks_until<T1_MARK>(_VAL); X;
//#define AT_END(X) delayclocks_until<T2_MARK>(_VAL); X;
#define TOTAL (T1 + T2 + T3)
#define T1_MARK (TOTAL - T1)
#define T2_MARK (T1_MARK - T2)
template<int MARK> __attribute__((always_inline)) static inline void delayclocks_until(register byte b) {
__asm__ __volatile__ (
" sub %0, %0, %1\n"
"L_%=: subs %0, %0, #2\n"
" bcs.n L_%=\n"
: /* no outputs */
: "r" (b), "I" (MARK)
: /* no clobbers */
);
}
#define FORCE_REFERENCE(var) asm volatile( "" : : "r" (var) )
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
template<int SKIP, bool ADVANCE> void showRGBInternal(register int nLeds) {
register uint32_t *data = m_pBuffer;
register uint32_t *end = data + 8*(nLeds*3);
register volatile uint32_t *CTPTR asm("r6")= &SysTick->CTRL; FORCE_REFERENCE(CTPTR);
// Setup and start the clock
_LOAD = TOTAL;
_VAL = 0;
_CTRL |= SysTick_CTRL_CLKSOURCE_Msk;
_CTRL |= SysTick_CTRL_ENABLE_Msk;
// read to clear the loop flag
_CTRL;
while(data < end) {
register uint32_t d = *data++;
// turn everything in the port on at the start
AT_BIT_START(REG_PIOC_SODR = PORT_MASK);
// part way through early clear the ones that should be 0 bits
AT_MARK(REG_PIOC_CODR = d);
// now all the way through zero everyone
AT_END(REG_PIOC_CODR= PORT_MASK);
};
}
};
#endif
#endif