-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
67 lines (63 loc) · 1.63 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
gship_tuition = {
"Gship": 539.33,
"Instate": 1509.01,
"Non-resident": 1678,
"Tuition inflation": 0.1,
}
salary = {
"Step 8": 6514.81,
"Step 9": 6656.08,
"Step 10": 7186.58,
"Fringe 8": 8986.0 / 3.0,
"Fringe 9": 8986.0 / 3.0,
"Fringe 10": 9702.0 / 3.0,
"Inflation": 0.03,
"SRA": 5336.0,
}
salary_per_department = {
"ece": {
"pre-master": np.nan,
"pre-candidacy": 0.45 * salary["Step 9"] + 0.023 * salary["Fringe 9"],
"post-candidacy": 0.45 * salary["Step 10"] + 0.023 * salary["Fringe 10"],
"candidacy year": 4,
},
"cs": {
"pre-master": 0.49 * salary["Step 8"] + 0.023 * salary["Fringe 8"],
"pre-candidacy": 0.49 * salary["Step 9"] + 0.023 * salary["Fringe 9"],
"post-candidacy": 0.49 * salary["Step 10"] + 0.023 * salary["Fringe 10"],
"candidacy year": 3,
},
"phys": {
"pre-master": np.nan,
"pre-candidacy": 0.4999 * salary["Step 8"] + 0.023 * salary["Fringe 8"],
"post-candidacy": 0.4999 * salary["Step 9"] + 0.023 * salary["Fringe 9"],
"candidacy year": 3,
},
}
name_dict = {
"Student 1": {
"department": "",
"start": "",
"end": "",
"instate": "",
"candidacy": "",
"overhead": "",
},
"Student 2": {
"department": "",
"start": "",
"end": "",
"instate": "",
"candidacy": "",
"overhead": "",
},
"Student 3": {
"department": "",
"start": "",
"end": "",
"instate": "",
"candidacy": "",
"overhead": "",
},
}