forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CapacitatedVehicleRoutingProblemWithTimeWindows.java
286 lines (261 loc) · 11.5 KB
/
CapacitatedVehicleRoutingProblemWithTimeWindows.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//
// Copyright 2012 Google
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.ortools.java;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.function.LongBinaryOperator;
import java.util.function.LongUnaryOperator;
import java.util.logging.Logger;
// A pair class
class Pair<K, V> {
final K first;
final V second;
public static <K, V> Pair<K, V> of(K element0, V element1) {
return new Pair<K, V>(element0, element1);
}
public Pair(K element0, V element1) {
this.first = element0;
this.second = element1;
}
}
/**
* Sample showing how to model and solve a capacitated vehicle routing problem with time windows
* using the swig-wrapped version of the vehicle routing library in src/constraint_solver.
*/
public class CapacitatedVehicleRoutingProblemWithTimeWindows {
private static Logger logger =
Logger.getLogger(CapacitatedVehicleRoutingProblemWithTimeWindows.class.getName());
// Locations representing either an order location or a vehicle route
// start/end.
private List<Pair<Integer, Integer>> locations = new ArrayList();
// Quantity to be picked up for each order.
private List<Integer> orderDemands = new ArrayList();
// Time window in which each order must be performed.
private List<Pair<Integer, Integer>> orderTimeWindows = new ArrayList();
// Penalty cost "paid" for dropping an order.
private List<Integer> orderPenalties = new ArrayList();
// Capacity of the vehicles.
private int vehicleCapacity = 0;
// Latest time at which each vehicle must end its tour.
private List<Integer> vehicleEndTime = new ArrayList();
// Cost per unit of distance of each vehicle.
private List<Integer> vehicleCostCoefficients = new ArrayList();
// Vehicle start and end indices. They have to be implemented as int[] due
// to the available SWIG-ed interface.
private int vehicleStarts[];
private int vehicleEnds[];
// Random number generator to produce data.
private final Random randomGenerator = new Random(0xBEEF);
/**
* Creates a Manhattan Distance evaluator with 'costCoefficient'.
*
* @param manager Node Index Manager.
* @param costCoefficient The coefficient to apply to the evaluator.
*/
private LongBinaryOperator buildManhattanCallback(
RoutingIndexManager manager, int costCoefficient) {
return new LongBinaryOperator() {
public long applyAsLong(long firstIndex, long secondIndex) {
try {
int firstNode = manager.indexToNode(firstIndex);
int secondNode = manager.indexToNode(secondIndex);
Pair<Integer, Integer> firstLocation = locations.get(firstNode);
Pair<Integer, Integer> secondLocation = locations.get(secondNode);
return (long) costCoefficient
* (Math.abs(firstLocation.first - secondLocation.first)
+ Math.abs(firstLocation.second - secondLocation.second));
} catch (Throwable throwed) {
logger.warning(throwed.getMessage());
return 0;
}
}
};
}
/**
* Creates order data. Location of the order is random, as well as its demand (quantity), time
* window and penalty.
*
* @param numberOfOrders number of orders to build.
* @param xMax maximum x coordinate in which orders are located.
* @param yMax maximum y coordinate in which orders are located.
* @param demandMax maximum quantity of a demand.
* @param timeWindowMax maximum starting time of the order time window.
* @param timeWindowWidth duration of the order time window.
* @param penaltyMin minimum pernalty cost if order is dropped.
* @param penaltyMax maximum pernalty cost if order is dropped.
*/
private void buildOrders(int numberOfOrders, int xMax, int yMax, int demandMax, int timeWindowMax,
int timeWindowWidth, int penaltyMin, int penaltyMax) {
logger.info("Building orders.");
for (int order = 0; order < numberOfOrders; ++order) {
locations.add(Pair.of(randomGenerator.nextInt(xMax + 1), randomGenerator.nextInt(yMax + 1)));
orderDemands.add(randomGenerator.nextInt(demandMax + 1));
int timeWindowStart = randomGenerator.nextInt(timeWindowMax + 1);
orderTimeWindows.add(Pair.of(timeWindowStart, timeWindowStart + timeWindowWidth));
orderPenalties.add(randomGenerator.nextInt(penaltyMax - penaltyMin + 1) + penaltyMin);
}
}
/**
* Creates fleet data. Vehicle starting and ending locations are random, as well as vehicle costs
* per distance unit.
*
* @param numberOfVehicles
* @param xMax maximum x coordinate in which orders are located.
* @param yMax maximum y coordinate in which orders are located.
* @param endTime latest end time of a tour of a vehicle.
* @param capacity capacity of a vehicle.
* @param costCoefficientMax maximum cost per distance unit of a vehicle (mimimum is 1),
*/
private void buildFleet(
int numberOfVehicles, int xMax, int yMax, int endTime, int capacity, int costCoefficientMax) {
logger.info("Building fleet.");
vehicleCapacity = capacity;
vehicleStarts = new int[numberOfVehicles];
vehicleEnds = new int[numberOfVehicles];
for (int vehicle = 0; vehicle < numberOfVehicles; ++vehicle) {
vehicleStarts[vehicle] = locations.size();
locations.add(Pair.of(randomGenerator.nextInt(xMax + 1), randomGenerator.nextInt(yMax + 1)));
vehicleEnds[vehicle] = locations.size();
locations.add(Pair.of(randomGenerator.nextInt(xMax + 1), randomGenerator.nextInt(yMax + 1)));
vehicleEndTime.add(endTime);
vehicleCostCoefficients.add(randomGenerator.nextInt(costCoefficientMax) + 1);
}
}
/** Solves the current routing problem. */
private void solve(final int numberOfOrders, final int numberOfVehicles) {
logger.info(
"Creating model with " + numberOfOrders + " orders and " + numberOfVehicles + " vehicles.");
// Finalizing model
final int numberOfLocations = locations.size();
RoutingIndexManager manager =
new RoutingIndexManager(numberOfLocations, numberOfVehicles, vehicleStarts, vehicleEnds);
RoutingModel model = new RoutingModel(manager);
// Setting up dimensions
final int bigNumber = 100000;
final LongBinaryOperator callback = buildManhattanCallback(manager, 1);
final String timeStr = "time";
model.addDimension(
model.registerTransitCallback(callback), bigNumber, bigNumber, false, timeStr);
RoutingDimension timeDimension = model.getMutableDimension(timeStr);
LongUnaryOperator demandCallback = new LongUnaryOperator() {
public long applyAsLong(long index) {
try {
int node = manager.indexToNode(index);
if (node < numberOfOrders) {
return orderDemands.get(node);
}
return 0;
} catch (Throwable throwed) {
logger.warning(throwed.getMessage());
return 0;
}
}
};
final String capacityStr = "capacity";
model.addDimension(
model.registerUnaryTransitCallback(demandCallback), 0, vehicleCapacity, true, capacityStr);
RoutingDimension capacityDimension = model.getMutableDimension(capacityStr);
// Setting up vehicles
LongBinaryOperator[] callbacks = new LongBinaryOperator[numberOfVehicles];
for (int vehicle = 0; vehicle < numberOfVehicles; ++vehicle) {
final int costCoefficient = vehicleCostCoefficients.get(vehicle);
callbacks[vehicle] = buildManhattanCallback(manager, costCoefficient);
final int vehicleCost = model.registerTransitCallback(callbacks[vehicle]);
model.setArcCostEvaluatorOfVehicle(vehicleCost, vehicle);
timeDimension.cumulVar(model.end(vehicle)).setMax(vehicleEndTime.get(vehicle));
}
// Setting up orders
for (int order = 0; order < numberOfOrders; ++order) {
timeDimension.cumulVar(order).setRange(
orderTimeWindows.get(order).first, orderTimeWindows.get(order).second);
long[] orderIndices = {manager.nodeToIndex(order)};
model.addDisjunction(orderIndices, orderPenalties.get(order));
}
// Solving
RoutingSearchParameters parameters =
main.defaultRoutingSearchParameters()
.toBuilder()
.setFirstSolutionStrategy(FirstSolutionStrategy.Value.ALL_UNPERFORMED)
.build();
logger.info("Search");
Assignment solution = model.solveWithParameters(parameters);
if (solution != null) {
String output = "Total cost: " + solution.objectiveValue() + "\n";
// Dropped orders
String dropped = "";
for (int order = 0; order < numberOfOrders; ++order) {
if (solution.value(model.nextVar(order)) == order) {
dropped += " " + order;
}
}
if (dropped.length() > 0) {
output += "Dropped orders:" + dropped + "\n";
}
// Routes
for (int vehicle = 0; vehicle < numberOfVehicles; ++vehicle) {
String route = "Vehicle " + vehicle + ": ";
long order = model.start(vehicle);
// Empty route has a minimum of two nodes: Start => End
if (model.isEnd(solution.value(model.nextVar(order)))) {
route += "Empty";
} else {
for (; !model.isEnd(order); order = solution.value(model.nextVar(order))) {
IntVar load = capacityDimension.cumulVar(order);
IntVar time = timeDimension.cumulVar(order);
route += order + " Load(" + solution.value(load) + ") "
+ "Time(" + solution.min(time) + ", " + solution.max(time) + ") -> ";
}
IntVar load = capacityDimension.cumulVar(order);
IntVar time = timeDimension.cumulVar(order);
route += order + " Load(" + solution.value(load) + ") "
+ "Time(" + solution.min(time) + ", " + solution.max(time) + ")";
}
output += route + "\n";
}
logger.info(output);
}
}
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
CapacitatedVehicleRoutingProblemWithTimeWindows problem =
new CapacitatedVehicleRoutingProblemWithTimeWindows();
final int xMax = 20;
final int yMax = 20;
final int demandMax = 3;
final int timeWindowMax = 24 * 60;
final int timeWindowWidth = 4 * 60;
final int penaltyMin = 50;
final int penaltyMax = 100;
final int endTime = 24 * 60;
final int costCoefficientMax = 3;
final int orders = 100;
final int vehicles = 20;
final int capacity = 50;
problem.buildOrders(
orders, xMax, yMax, demandMax, timeWindowMax, timeWindowWidth, penaltyMin, penaltyMax);
problem.buildFleet(vehicles, xMax, yMax, endTime, capacity, costCoefficientMax);
problem.solve(orders, vehicles);
}
}