forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IntegerProgramming.java
82 lines (70 loc) · 3.29 KB
/
IntegerProgramming.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.ortools.java;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
/** Integer programming example that shows how to use the API. */
public class IntegerProgramming {
private static void runIntegerProgrammingExample(String solverType) {
MPSolver solver = MPSolver.createSolver(solverType);
if (solver == null) {
System.out.println("Could not create solver " + solverType);
return;
}
double infinity = java.lang.Double.POSITIVE_INFINITY;
// x1 and x2 are integer non-negative variables.
MPVariable x1 = solver.makeIntVar(0.0, infinity, "x1");
MPVariable x2 = solver.makeIntVar(0.0, infinity, "x2");
// Minimize x1 + 2 * x2.
MPObjective objective = solver.objective();
objective.setCoefficient(x1, 1);
objective.setCoefficient(x2, 2);
// 2 * x2 + 3 * x1 >= 17.
MPConstraint ct = solver.makeConstraint(17, infinity);
ct.setCoefficient(x1, 3);
ct.setCoefficient(x2, 2);
final MPSolver.ResultStatus resultStatus = solver.solve();
// Check that the problem has an optimal solution.
if (resultStatus != MPSolver.ResultStatus.OPTIMAL) {
System.err.println("The problem does not have an optimal solution!");
return;
}
// Verify that the solution satisfies all constraints (when using solvers
// others than GLOP_LINEAR_PROGRAMMING, this is highly recommended!).
if (!solver.verifySolution(/*tolerance=*/1e-7, /* log_errors= */ true)) {
System.err.println("The solution returned by the solver violated the"
+ " problem constraints by at least 1e-7");
return;
}
System.out.println("Problem solved in " + solver.wallTime() + " milliseconds");
// The objective value of the solution.
System.out.println("Optimal objective value = " + solver.objective().value());
// The value of each variable in the solution.
System.out.println("x1 = " + x1.solutionValue());
System.out.println("x2 = " + x2.solutionValue());
System.out.println("Advanced usage:");
System.out.println("Problem solved in " + solver.nodes() + " branch-and-bound nodes");
}
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
System.out.println("---- Integer programming example with SCIP (recommended) ----");
runIntegerProgrammingExample("SCIP");
System.out.println("---- Integer programming example with CBC ----");
runIntegerProgrammingExample("CBC");
System.out.println("---- Integer programming example with CP-SAT ----");
runIntegerProgrammingExample("SAT");
}
}