forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
random_tsp.py
executable file
·148 lines (129 loc) · 5.25 KB
/
random_tsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Traveling Salesman Sample.
This is a sample using the routing library python wrapper to solve a
Traveling Salesman Problem.
The description of the problem can be found here:
http://en.wikipedia.org/wiki/Travelling_salesman_problem.
The optimization engine uses local search to improve solutions, first
solutions being generated using a cheapest addition heuristic.
Optionally one can randomly forbid a set of random connections between nodes
(forbidden arcs).
"""
import argparse
from functools import partial
import random
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
parser = argparse.ArgumentParser()
parser.add_argument(
'--tsp_size',
default=10,
type=int,
help='Size of Traveling Salesman Problem instance.')
parser.add_argument(
'--tsp_use_random_matrix',
default=True,
type=bool,
help='Use random cost matrix.')
parser.add_argument(
'--tsp_random_forbidden_connections',
default=0,
type=int,
help='Number of random forbidden connections.')
parser.add_argument(
'--tsp_random_seed', default=0, type=int, help='Random seed.')
# Cost/distance functions.
def Distance(manager, i, j):
"""Sample function."""
# Put your distance code here.
node_i = manager.IndexToNode(i)
node_j = manager.IndexToNode(j)
return node_i + node_j
class RandomMatrix(object):
"""Random matrix."""
def __init__(self, size, seed):
"""Initialize random matrix."""
rand = random.Random()
rand.seed(seed)
distance_max = 100
self.matrix = {}
for from_node in range(size):
self.matrix[from_node] = {}
for to_node in range(size):
if from_node == to_node:
self.matrix[from_node][to_node] = 0
else:
self.matrix[from_node][to_node] = rand.randrange(
distance_max)
def Distance(self, manager, from_index, to_index):
return self.matrix[manager.IndexToNode(from_index)][manager.IndexToNode(
to_index)]
def main(args):
# Create routing model
if args.tsp_size > 0:
# TSP of size args.tsp_size
# Second argument = 1 to build a single tour (it's a TSP).
# Nodes are indexed from 0 to args_tsp_size - 1, by default the start of
# the route is node 0.
manager = pywrapcp.RoutingIndexManager(args.tsp_size, 1, 0)
routing = pywrapcp.RoutingModel(manager)
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
# Setting first solution heuristic (cheapest addition).
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
# Setting the cost function.
# Put a callback to the distance accessor here. The callback takes two
# arguments (the from and to node indices) and returns the distance between
# these indices.
cost = 0
if args.tsp_use_random_matrix:
matrix = RandomMatrix(args.tsp_size, args.tsp_random_seed)
cost = routing.RegisterTransitCallback(
partial(matrix.Distance, manager))
else:
cost = routing.RegisterTransitCallback(partial(Distance, manager))
routing.SetArcCostEvaluatorOfAllVehicles(cost)
# Forbid node connections (randomly).
rand = random.Random()
rand.seed(args.tsp_random_seed)
forbidden_connections = 0
while forbidden_connections < args.tsp_random_forbidden_connections:
from_node = rand.randrange(args.tsp_size - 1)
to_node = rand.randrange(args.tsp_size - 1) + 1
if routing.NextVar(from_node).Contains(to_node):
print('Forbidding connection ' + str(from_node) + ' -> ' +
str(to_node))
routing.NextVar(from_node).RemoveValue(to_node)
forbidden_connections += 1
# Solve, returns a solution if any.
assignment = routing.Solve()
if assignment:
# Solution cost.
print(assignment.ObjectiveValue())
# Inspect solution.
# Only one route here; otherwise iterate from 0 to routing.vehicles() - 1
route_number = 0
node = routing.Start(route_number)
route = ''
while not routing.IsEnd(node):
route += str(node) + ' -> '
node = assignment.Value(routing.NextVar(node))
route += '0'
print(route)
else:
print('No solution found.')
else:
print('Specify an instance greater than 0.')
if __name__ == '__main__':
main(parser.parse_args())