forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocessor.h
1088 lines (962 loc) · 46.5 KB
/
preprocessor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This file contains the presolving code for a LinearProgram.
//
// A classical reference is:
// E. D. Andersen, K. D. Andersen, "Presolving in linear programming.",
// Mathematical Programming 71 (1995) 221-245.
#ifndef OR_TOOLS_GLOP_PREPROCESSOR_H_
#define OR_TOOLS_GLOP_PREPROCESSOR_H_
#include <memory>
#include "ortools/base/strong_vector.h"
#include "ortools/glop/parameters.pb.h"
#include "ortools/glop/revised_simplex.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/matrix_scaler.h"
namespace operations_research {
namespace glop {
// --------------------------------------------------------
// Preprocessor
// --------------------------------------------------------
// This is the base class for preprocessors.
//
// TODO(user): On most preprocessors, calling Run() more than once will not work
// as expected. Fix? or document and crash in debug if this happens.
class Preprocessor {
public:
explicit Preprocessor(const GlopParameters* parameters);
Preprocessor(const Preprocessor&) = delete;
Preprocessor& operator=(const Preprocessor&) = delete;
virtual ~Preprocessor();
// Runs the preprocessor by modifying the given linear program. Returns true
// if a postsolve step will be needed (i.e. RecoverSolution() is not the
// identity function). Also updates status_ to something different from
// ProblemStatus::INIT if the problem was solved (including bad statuses
// like ProblemStatus::ABNORMAL, ProblemStatus::INFEASIBLE, etc.).
virtual bool Run(LinearProgram* lp) = 0;
// Stores the optimal solution of the linear program that was passed to
// Run(). The given solution needs to be set to the optimal solution of the
// linear program "modified" by Run().
virtual void RecoverSolution(ProblemSolution* solution) const = 0;
// Returns the status of the preprocessor.
// A status different from ProblemStatus::INIT means that the problem is
// solved and there is not need to call subsequent preprocessors.
ProblemStatus status() const { return status_; }
// Some preprocessors only need minimal changes when used with integer
// variables in a MIP context. Setting this to true allows to consider integer
// variables as integer in these preprocessors.
//
// Not all preprocessors handle integer variables correctly, calling this
// function on them will cause a LOG(FATAL).
virtual void UseInMipContext() { in_mip_context_ = true; }
void SetTimeLimit(TimeLimit* time_limit) { time_limit_ = time_limit; }
protected:
// Returns true if a is less than b (or slighlty greater than b with a given
// tolerance).
bool IsSmallerWithinFeasibilityTolerance(Fractional a, Fractional b) const {
return ::operations_research::IsSmallerWithinTolerance(
a, b, parameters_.solution_feasibility_tolerance());
}
bool IsSmallerWithinPreprocessorZeroTolerance(Fractional a,
Fractional b) const {
// TODO(user): use an absolute tolerance here to be even more defensive?
return ::operations_research::IsSmallerWithinTolerance(
a, b, parameters_.preprocessor_zero_tolerance());
}
ProblemStatus status_;
const GlopParameters& parameters_;
bool in_mip_context_;
std::unique_ptr<TimeLimit> infinite_time_limit_;
TimeLimit* time_limit_;
};
// --------------------------------------------------------
// MainLpPreprocessor
// --------------------------------------------------------
// This is the main LP preprocessor responsible for calling all the other
// preprocessors in this file, possibly more than once.
class MainLpPreprocessor : public Preprocessor {
public:
explicit MainLpPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
MainLpPreprocessor(const MainLpPreprocessor&) = delete;
MainLpPreprocessor& operator=(const MainLpPreprocessor&) = delete;
~MainLpPreprocessor() override {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const override;
// Like RecoverSolution but destroys data structures as it goes to reduce peak
// RAM use. After calling this the MainLpPreprocessor object may no longer be
// used.
void DestructiveRecoverSolution(ProblemSolution* solution);
void SetLogger(SolverLogger* logger) { logger_ = logger; }
private:
// Runs the given preprocessor and push it on preprocessors_ for the postsolve
// step when needed.
void RunAndPushIfRelevant(std::unique_ptr<Preprocessor> preprocessor,
const std::string& name, TimeLimit* time_limit,
LinearProgram* lp);
// Stack of preprocessors currently applied to the lp that needs postsolve.
std::vector<std::unique_ptr<Preprocessor>> preprocessors_;
// Helpers for logging during presolve.
SolverLogger default_logger_;
SolverLogger* logger_ = &default_logger_;
// Initial dimension of the lp given to Run(), for displaying purpose.
EntryIndex initial_num_entries_;
RowIndex initial_num_rows_;
ColIndex initial_num_cols_;
};
// --------------------------------------------------------
// ColumnDeletionHelper
// --------------------------------------------------------
// Some preprocessors need to save columns/rows of the matrix for the postsolve.
// This class helps them do that.
//
// Note that we used to simply use a SparseMatrix, which is like a vector of
// SparseColumn. However on large problem with 10+ millions columns, each empty
// SparseColumn take 48 bytes, so if we run like 10 presolve step that save as
// little as 1 columns, we already are at 4GB memory for nothing!
class ColumnsSaver {
public:
// Saves a column. The first version CHECKs that it is not already done.
void SaveColumn(ColIndex col, const SparseColumn& column);
void SaveColumnIfNotAlreadyDone(ColIndex col, const SparseColumn& column);
// Returns the saved column. The first version CHECKs that it was saved.
const SparseColumn& SavedColumn(ColIndex col) const;
const SparseColumn& SavedOrEmptyColumn(ColIndex col) const;
private:
SparseColumn empty_column_;
absl::flat_hash_map<ColIndex, int> saved_columns_index_;
// TODO(user): We could optimize further since all these are read only, we
// could use a CompactSparseMatrix instead.
std::deque<SparseColumn> saved_columns_;
};
// Help preprocessors deal with column deletion.
class ColumnDeletionHelper {
public:
ColumnDeletionHelper() {}
ColumnDeletionHelper(const ColumnDeletionHelper&) = delete;
ColumnDeletionHelper& operator=(const ColumnDeletionHelper&) = delete;
// Remember the given column as "deleted" so that it can later be restored
// by RestoreDeletedColumns(). Optionally, the caller may indicate the
// value and status of the corresponding variable so that it is automatically
// restored; if they don't then the restored value and status will be junk
// and must be set by the caller.
//
// The actual deletion is done by LinearProgram::DeleteColumns().
void MarkColumnForDeletion(ColIndex col);
void MarkColumnForDeletionWithState(ColIndex col, Fractional value,
VariableStatus status);
// From a solution omitting the deleted column, expands it and inserts the
// deleted columns. If values and statuses for the corresponding variables
// were saved, they'll be restored.
void RestoreDeletedColumns(ProblemSolution* solution) const;
// Returns whether or not the given column is marked for deletion.
bool IsColumnMarked(ColIndex col) const {
return col < is_column_deleted_.size() && is_column_deleted_[col];
}
// Returns a Boolean vector of the column to be deleted.
const DenseBooleanRow& GetMarkedColumns() const { return is_column_deleted_; }
// Returns true if no columns have been marked for deletion.
bool IsEmpty() const { return is_column_deleted_.empty(); }
// Restores the class to its initial state.
void Clear();
// Returns the value that will be restored by
// RestoreDeletedColumnInSolution(). Note that only the marked position value
// make sense.
const DenseRow& GetStoredValue() const { return stored_value_; }
private:
DenseBooleanRow is_column_deleted_;
// Note that this vector has the same size as is_column_deleted_ and that
// the value of the variable corresponding to a deleted column col is stored
// at position col. Values of columns not deleted are not used. We use this
// data structure so columns can be deleted in any order if needed.
DenseRow stored_value_;
VariableStatusRow stored_status_;
};
// --------------------------------------------------------
// RowDeletionHelper
// --------------------------------------------------------
// Help preprocessors deal with row deletion.
class RowDeletionHelper {
public:
RowDeletionHelper() {}
RowDeletionHelper(const RowDeletionHelper&) = delete;
RowDeletionHelper& operator=(const RowDeletionHelper&) = delete;
// Returns true if no rows have been marked for deletion.
bool IsEmpty() const { return is_row_deleted_.empty(); }
// Restores the class to its initial state.
void Clear();
// Adds a deleted row to the helper.
void MarkRowForDeletion(RowIndex row);
// If the given row was marked for deletion, unmark it.
void UnmarkRow(RowIndex row);
// Returns a Boolean vector of the row to be deleted.
const DenseBooleanColumn& GetMarkedRows() const;
// Returns whether or not the given row is marked for deletion.
bool IsRowMarked(RowIndex row) const {
return row < is_row_deleted_.size() && is_row_deleted_[row];
}
// From a solution without the deleted rows, expand it by restoring
// the deleted rows to a VariableStatus::BASIC status with 0.0 value.
// This latter value is important, many preprocessors rely on it.
void RestoreDeletedRows(ProblemSolution* solution) const;
private:
DenseBooleanColumn is_row_deleted_;
};
// --------------------------------------------------------
// EmptyColumnPreprocessor
// --------------------------------------------------------
// Removes the empty columns from the problem.
class EmptyColumnPreprocessor : public Preprocessor {
public:
explicit EmptyColumnPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
EmptyColumnPreprocessor(const EmptyColumnPreprocessor&) = delete;
EmptyColumnPreprocessor& operator=(const EmptyColumnPreprocessor&) = delete;
~EmptyColumnPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
ColumnDeletionHelper column_deletion_helper_;
};
// --------------------------------------------------------
// ProportionalColumnPreprocessor
// --------------------------------------------------------
// Removes the proportional columns from the problem when possible. Two columns
// are proportional if one is a non-zero scalar multiple of the other.
//
// Note that in the linear programming literature, two proportional columns are
// usually called duplicates. The notion is the same once the problem has been
// scaled. However, during presolve the columns can't be assumed to be scaled,
// so it makes sense to use the more general notion of proportional columns.
class ProportionalColumnPreprocessor : public Preprocessor {
public:
explicit ProportionalColumnPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
ProportionalColumnPreprocessor(const ProportionalColumnPreprocessor&) =
delete;
ProportionalColumnPreprocessor& operator=(
const ProportionalColumnPreprocessor&) = delete;
~ProportionalColumnPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
void UseInMipContext() final { LOG(FATAL) << "Not implemented."; }
private:
// Postsolve information about proportional columns with the same scaled cost
// that were merged during presolve.
// The proportionality factor of each column. If two columns are proportional
// with factor p1 and p2 then p1 times the first column is the same as p2
// times the second column.
DenseRow column_factors_;
// If merged_columns_[col] != kInvalidCol, then column col has been merged
// into the column merged_columns_[col].
ColMapping merged_columns_;
// The old and new variable bounds.
DenseRow lower_bounds_;
DenseRow upper_bounds_;
DenseRow new_lower_bounds_;
DenseRow new_upper_bounds_;
ColumnDeletionHelper column_deletion_helper_;
};
// --------------------------------------------------------
// ProportionalRowPreprocessor
// --------------------------------------------------------
// Removes the proportional rows from the problem.
// The linear programming literature also calls such rows duplicates, see the
// same remark above for columns in ProportionalColumnPreprocessor.
class ProportionalRowPreprocessor : public Preprocessor {
public:
explicit ProportionalRowPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
ProportionalRowPreprocessor(const ProportionalRowPreprocessor&) = delete;
ProportionalRowPreprocessor& operator=(const ProportionalRowPreprocessor&) =
delete;
~ProportionalRowPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
// Informations about proportional rows, only filled for such rows.
DenseColumn row_factors_;
RowMapping upper_bound_sources_;
RowMapping lower_bound_sources_;
bool lp_is_maximization_problem_;
RowDeletionHelper row_deletion_helper_;
};
// --------------------------------------------------------
// SingletonPreprocessor
// --------------------------------------------------------
// Removes as many singleton rows and singleton columns as possible from the
// problem. Note that not all types of singleton columns can be removed. See the
// comments below on the SingletonPreprocessor functions for more details.
//
// TODO(user): Generalize the design used in this preprocessor to a general
// "propagation" framework in order to apply as many reductions as possible in
// an efficient manner.
// Holds a triplet (row, col, coefficient).
struct MatrixEntry {
MatrixEntry(RowIndex _row, ColIndex _col, Fractional _coeff)
: row(_row), col(_col), coeff(_coeff) {}
RowIndex row;
ColIndex col;
Fractional coeff;
};
// Stores the information needed to undo a singleton row/column deletion.
class SingletonUndo {
public:
// The type of a given operation.
typedef enum {
ZERO_COST_SINGLETON_COLUMN,
SINGLETON_ROW,
SINGLETON_COLUMN_IN_EQUALITY,
MAKE_CONSTRAINT_AN_EQUALITY,
} OperationType;
// Stores the information, which together with the field deleted_columns_ and
// deleted_rows_ of SingletonPreprocessor, are needed to undo an operation
// with the given type. Note that all the arguments must refer to the linear
// program BEFORE the operation is applied.
SingletonUndo(OperationType type, const LinearProgram& lp, MatrixEntry e,
ConstraintStatus status);
// Undo the operation saved in this class, taking into account the saved
// column and row (at the row/col given by Entry()) passed by the calling
// instance of SingletonPreprocessor. Note that the operations must be undone
// in the reverse order of the one in which they were applied.
void Undo(const GlopParameters& parameters, const SparseColumn& saved_column,
const SparseColumn& saved_row, ProblemSolution* solution) const;
const MatrixEntry& Entry() const { return e_; }
private:
// Actual undo functions for each OperationType.
// Undo() just calls the correct one.
void SingletonRowUndo(const SparseColumn& saved_column,
ProblemSolution* solution) const;
void ZeroCostSingletonColumnUndo(const GlopParameters& parameters,
const SparseColumn& saved_row,
ProblemSolution* solution) const;
void SingletonColumnInEqualityUndo(const GlopParameters& parameters,
const SparseColumn& saved_row,
ProblemSolution* solution) const;
void MakeConstraintAnEqualityUndo(ProblemSolution* solution) const;
// All the information needed during undo.
OperationType type_;
bool is_maximization_;
MatrixEntry e_;
Fractional cost_;
// TODO(user): regroup the pair (lower bound, upper bound) in a bound class?
Fractional variable_lower_bound_;
Fractional variable_upper_bound_;
Fractional constraint_lower_bound_;
Fractional constraint_upper_bound_;
// This in only used with MAKE_CONSTRAINT_AN_EQUALITY undo.
// TODO(user): Clean that up using many Undo classes and virtual functions.
ConstraintStatus constraint_status_;
};
// Deletes as many singleton rows or singleton columns as possible. Note that
// each time we delete a row or a column, new singletons may be created.
class SingletonPreprocessor : public Preprocessor {
public:
explicit SingletonPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
SingletonPreprocessor(const SingletonPreprocessor&) = delete;
SingletonPreprocessor& operator=(const SingletonPreprocessor&) = delete;
~SingletonPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
// Returns the MatrixEntry of the given singleton row or column, taking into
// account the rows and columns that were already deleted.
MatrixEntry GetSingletonColumnMatrixEntry(ColIndex col,
const SparseMatrix& matrix);
MatrixEntry GetSingletonRowMatrixEntry(RowIndex row,
const SparseMatrix& matrix_transpose);
// A singleton row can always be removed by changing the corresponding
// variable bounds to take into account the bounds on this singleton row.
void DeleteSingletonRow(MatrixEntry e, LinearProgram* lp);
// Internal operation when removing a zero-cost singleton column corresponding
// to the given entry. This modifies the constraint bounds to take into acount
// the bounds of the corresponding variable.
void UpdateConstraintBoundsWithVariableBounds(MatrixEntry e,
LinearProgram* lp);
// Checks if all other variables in the constraint are integer and the
// coefficients are divisible by the coefficient of the singleton variable.
bool IntegerSingletonColumnIsRemovable(const MatrixEntry& matrix_entry,
const LinearProgram& lp) const;
// A singleton column with a cost of zero can always be removed by changing
// the corresponding constraint bounds to take into acount the bound of this
// singleton column.
void DeleteZeroCostSingletonColumn(const SparseMatrix& matrix_transpose,
MatrixEntry e, LinearProgram* lp);
// Returns true if the constraint associated to the given singleton column was
// an equality or could be made one:
// If a singleton variable is free in a direction that improves the cost, then
// we can always move it as much as possible in this direction. Only the
// constraint will stop us, making it an equality. If the constraint doesn't
// stop us, then the program is unbounded (provided that there is a feasible
// solution).
//
// Note that this operation does not need any "undo" during the post-solve. At
// optimality, the dual value on the constraint row will be of the correct
// sign, and relaxing the constraint bound will not impact the dual
// feasibility of the solution.
//
// TODO(user): this operation can be generalized to columns with just one
// blocking constraint. Investigate how to use this. The 'reverse' can
// probably also be done, relaxing a constraint that is blocking a
// unconstrained variable.
bool MakeConstraintAnEqualityIfPossible(const SparseMatrix& matrix_transpose,
MatrixEntry e, LinearProgram* lp);
// If a singleton column appears in an equality, we can remove its cost by
// changing the other variables cost using the constraint. We can then delete
// the column like in DeleteZeroCostSingletonColumn().
void DeleteSingletonColumnInEquality(const SparseMatrix& matrix_transpose,
MatrixEntry e, LinearProgram* lp);
ColumnDeletionHelper column_deletion_helper_;
RowDeletionHelper row_deletion_helper_;
std::vector<SingletonUndo> undo_stack_;
// This is used as a "cache" by MakeConstraintAnEqualityIfPossible() to avoid
// scanning more than once each row. See the code to see how this is used.
absl::StrongVector<RowIndex, bool> row_sum_is_cached_;
absl::StrongVector<RowIndex, SumWithNegativeInfiniteAndOneMissing>
row_lb_sum_;
absl::StrongVector<RowIndex, SumWithPositiveInfiniteAndOneMissing>
row_ub_sum_;
// TODO(user): It is annoying that we need to store a part of the matrix that
// is not deleted here. This extra memory usage might show the limit of our
// presolve architecture that does not require a new matrix factorization on
// the original problem to reconstruct the solution.
ColumnsSaver columns_saver_;
ColumnsSaver rows_saver_;
};
// --------------------------------------------------------
// FixedVariablePreprocessor
// --------------------------------------------------------
// Removes the fixed variables from the problem.
class FixedVariablePreprocessor : public Preprocessor {
public:
explicit FixedVariablePreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
FixedVariablePreprocessor(const FixedVariablePreprocessor&) = delete;
FixedVariablePreprocessor& operator=(const FixedVariablePreprocessor&) =
delete;
~FixedVariablePreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
ColumnDeletionHelper column_deletion_helper_;
};
// --------------------------------------------------------
// ForcingAndImpliedFreeConstraintPreprocessor
// --------------------------------------------------------
// This preprocessor computes for each constraint row the bounds that are
// implied by the variable bounds and applies one of the following reductions:
//
// * If the intersection of the implied bounds and the current constraint bounds
// is empty (modulo some tolerance), the problem is INFEASIBLE.
//
// * If the intersection of the implied bounds and the current constraint bounds
// is a singleton (modulo some tolerance), then the constraint is said to be
// forcing and all the variables that appear in it can be fixed to one of their
// bounds. All these columns and the constraint row is removed.
//
// * If the implied bounds are included inside the current constraint bounds
// (modulo some tolerance) then the constraint is said to be redundant or
// implied free. Its bounds are relaxed and the constraint will be removed
// later by the FreeConstraintPreprocessor.
//
// * Otherwise, wo do nothing.
class ForcingAndImpliedFreeConstraintPreprocessor : public Preprocessor {
public:
explicit ForcingAndImpliedFreeConstraintPreprocessor(
const GlopParameters* parameters)
: Preprocessor(parameters) {}
ForcingAndImpliedFreeConstraintPreprocessor(
const ForcingAndImpliedFreeConstraintPreprocessor&) = delete;
ForcingAndImpliedFreeConstraintPreprocessor& operator=(
const ForcingAndImpliedFreeConstraintPreprocessor&) = delete;
~ForcingAndImpliedFreeConstraintPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
bool lp_is_maximization_problem_;
DenseRow costs_;
DenseBooleanColumn is_forcing_up_;
ColumnDeletionHelper column_deletion_helper_;
RowDeletionHelper row_deletion_helper_;
ColumnsSaver columns_saver_;
};
// --------------------------------------------------------
// ImpliedFreePreprocessor
// --------------------------------------------------------
// It is possible to compute "implied" bounds on a variable from the bounds of
// all the other variables and the constraints in which this variable take
// place. If such "implied" bounds are inside the variable bounds, then the
// variable bounds can be relaxed and the variable is said to be "implied free".
//
// This preprocessor detects the implied free variables and make as many as
// possible free with a priority towards low-degree columns. This transformation
// will make the simplex algorithm more efficient later, but will also make it
// possible to reduce the problem by applying subsequent transformations:
//
// * The SingletonPreprocessor already deals with implied free singleton
// variables and removes the columns and the rows in which they appear.
//
// * Any multiple of the column of a free variable can be added to any other
// column without changing the linear program solution. This is the dual
// counterpart of the fact that any multiple of an equality row can be added to
// any row.
//
// TODO(user): Only process doubleton columns so we have more chance in the
// later passes to create more doubleton columns? Such columns lead to a smaller
// problem thanks to the DoubletonFreeColumnPreprocessor.
class ImpliedFreePreprocessor : public Preprocessor {
public:
explicit ImpliedFreePreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
ImpliedFreePreprocessor(const ImpliedFreePreprocessor&) = delete;
ImpliedFreePreprocessor& operator=(const ImpliedFreePreprocessor&) = delete;
~ImpliedFreePreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
// This preprocessor adds fixed offsets to some variables. We remember those
// here to un-offset them in RecoverSolution().
DenseRow variable_offsets_;
// This preprocessor causes some variables who would normally be
// AT_{LOWER,UPPER}_BOUND to be VariableStatus::FREE. We store the restore
// value of these variables; which will only be used (eg. restored) if the
// variable actually turns out to be VariableStatus::FREE.
VariableStatusRow postsolve_status_of_free_variables_;
};
// --------------------------------------------------------
// DoubletonFreeColumnPreprocessor
// --------------------------------------------------------
// This preprocessor removes one of the two rows in which a doubleton column of
// a free variable appears. Since we can add any multiple of such a column to
// any other column, the way this works is that we can always remove all the
// entries on one row.
//
// Actually, we can remove all the entries except the one of the free column.
// But we will be left with a singleton row that we can delete in the same way
// as what is done in SingletonPreprocessor. That is by reporting the constraint
// bounds into the one of the originally free variable. After this operation,
// the doubleton free column will become a singleton and may or may not be
// removed later by the SingletonPreprocessor.
//
// Note that this preprocessor can be seen as the dual of the
// DoubletonEqualityRowPreprocessor since when taking the dual, an equality row
// becomes a free variable and vice versa.
//
// Note(user): As far as I know, this doubleton free column procedure is more
// general than what can be found in the research papers or in any of the linear
// solver open source codes as of July 2013. All of them only process such
// columns if one of the two rows is also an equality which is not actually
// required. Most probably, commercial solvers do use it though.
class DoubletonFreeColumnPreprocessor : public Preprocessor {
public:
explicit DoubletonFreeColumnPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
DoubletonFreeColumnPreprocessor(const DoubletonFreeColumnPreprocessor&) =
delete;
DoubletonFreeColumnPreprocessor& operator=(
const DoubletonFreeColumnPreprocessor&) = delete;
~DoubletonFreeColumnPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
enum RowChoice {
DELETED = 0,
MODIFIED = 1,
// This is just a constant for the number of rows in a doubleton column.
// That is 2, one will be DELETED, the other MODIFIED.
NUM_ROWS = 2,
};
struct RestoreInfo {
// The index of the original free doubleton column and its objective.
ColIndex col;
Fractional objective_coefficient;
// The row indices of the two involved rows and their coefficients on
// column col.
RowIndex row[NUM_ROWS];
Fractional coeff[NUM_ROWS];
// The deleted row as a column.
SparseColumn deleted_row_as_column;
};
std::vector<RestoreInfo> restore_stack_;
RowDeletionHelper row_deletion_helper_;
};
// --------------------------------------------------------
// UnconstrainedVariablePreprocessor
// --------------------------------------------------------
// If for a given variable, none of the constraints block it in one direction
// and this direction improves the objective, then this variable can be fixed to
// its bound in this direction. If this bound is infinite and the variable cost
// is non-zero, then the problem is unbounded.
//
// More generally, by using the constraints and the variables that are unbounded
// on one side, one can derive bounds on the dual values. These can be
// translated into bounds on the reduced costs or the columns, which may force
// variables to their bounds. This is called forcing and dominated columns in
// the Andersen & Andersen paper.
class UnconstrainedVariablePreprocessor : public Preprocessor {
public:
explicit UnconstrainedVariablePreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
UnconstrainedVariablePreprocessor(const UnconstrainedVariablePreprocessor&) =
delete;
UnconstrainedVariablePreprocessor& operator=(
const UnconstrainedVariablePreprocessor&) = delete;
~UnconstrainedVariablePreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
// Removes the given variable and all the rows in which it appears: If a
// variable is unconstrained with a zero cost, then all the constraints in
// which it appears can be made free! More precisely, during postsolve, if
// such a variable is unconstrained towards +kInfinity, for any activity value
// of the involved constraints, an M exists such that for each value of the
// variable >= M the problem will be feasible.
//
// The algorithm during postsolve is to find a feasible value for all such
// variables while trying to keep their magnitudes small (for better numerical
// behavior). target_bound should take only two possible values: +/-kInfinity.
void RemoveZeroCostUnconstrainedVariable(ColIndex col,
Fractional target_bound,
LinearProgram* lp);
private:
// Lower/upper bounds on the feasible dual value. We use constraints and
// variables unbounded in one direction to derive these bounds. We use these
// bounds to compute bounds on the reduced costs of the problem variables.
// Note that any finite bounds on a reduced cost means that the variable
// (ignoring its domain) can move freely in one direction.
DenseColumn dual_lb_;
DenseColumn dual_ub_;
// Indicates if a given column may have participated in the current lb/ub
// on the reduced cost of the same column.
DenseBooleanRow may_have_participated_ub_;
DenseBooleanRow may_have_participated_lb_;
ColumnDeletionHelper column_deletion_helper_;
RowDeletionHelper row_deletion_helper_;
ColumnsSaver rows_saver_;
DenseColumn rhs_;
DenseColumn activity_sign_correction_;
DenseBooleanRow is_unbounded_;
};
// --------------------------------------------------------
// FreeConstraintPreprocessor
// --------------------------------------------------------
// Removes the constraints with no bounds from the problem.
class FreeConstraintPreprocessor : public Preprocessor {
public:
explicit FreeConstraintPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
FreeConstraintPreprocessor(const FreeConstraintPreprocessor&) = delete;
FreeConstraintPreprocessor& operator=(const FreeConstraintPreprocessor&) =
delete;
~FreeConstraintPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
RowDeletionHelper row_deletion_helper_;
};
// --------------------------------------------------------
// EmptyConstraintPreprocessor
// --------------------------------------------------------
// Removes the constraints with no coefficients from the problem.
class EmptyConstraintPreprocessor : public Preprocessor {
public:
explicit EmptyConstraintPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
EmptyConstraintPreprocessor(const EmptyConstraintPreprocessor&) = delete;
EmptyConstraintPreprocessor& operator=(const EmptyConstraintPreprocessor&) =
delete;
~EmptyConstraintPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
RowDeletionHelper row_deletion_helper_;
};
// --------------------------------------------------------
// RemoveNearZeroEntriesPreprocessor
// --------------------------------------------------------
// Removes matrix entries that have only a negligible impact on the solution.
// Using the variable bounds, we derive a maximum possible impact, and remove
// the entries whose impact is under a given tolerance.
//
// TODO(user): This preprocessor doesn't work well on badly scaled problems. In
// particular, it will set the objective to zero if all the objective
// coefficients are small! Run it after ScalingPreprocessor or fix the code.
class RemoveNearZeroEntriesPreprocessor : public Preprocessor {
public:
explicit RemoveNearZeroEntriesPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
RemoveNearZeroEntriesPreprocessor(const RemoveNearZeroEntriesPreprocessor&) =
delete;
RemoveNearZeroEntriesPreprocessor& operator=(
const RemoveNearZeroEntriesPreprocessor&) = delete;
~RemoveNearZeroEntriesPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
};
// --------------------------------------------------------
// SingletonColumnSignPreprocessor
// --------------------------------------------------------
// Make sure that the only coefficient of all singleton columns (i.e. column
// with only one entry) is positive. This is because this way the column will
// be transformed in an identity column by the scaling. This will lead to more
// efficient solve when this column is involved.
class SingletonColumnSignPreprocessor : public Preprocessor {
public:
explicit SingletonColumnSignPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
SingletonColumnSignPreprocessor(const SingletonColumnSignPreprocessor&) =
delete;
SingletonColumnSignPreprocessor& operator=(
const SingletonColumnSignPreprocessor&) = delete;
~SingletonColumnSignPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
std::vector<ColIndex> changed_columns_;
};
// --------------------------------------------------------
// DoubletonEqualityRowPreprocessor
// --------------------------------------------------------
// Reduce equality constraints involving two variables (i.e. aX + bY = c),
// by substitution (and thus removal) of one of the variables by the other
// in all the constraints that it is involved in.
class DoubletonEqualityRowPreprocessor : public Preprocessor {
public:
explicit DoubletonEqualityRowPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
DoubletonEqualityRowPreprocessor(const DoubletonEqualityRowPreprocessor&) =
delete;
DoubletonEqualityRowPreprocessor& operator=(
const DoubletonEqualityRowPreprocessor&) = delete;
~DoubletonEqualityRowPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
private:
enum ColChoice {
DELETED = 0,
MODIFIED = 1,
// For for() loops iterating over the ColChoice values, and/or arrays.
NUM_DOUBLETON_COLS = 2,
};
static ColChoice OtherColChoice(ColChoice x) {
return x == DELETED ? MODIFIED : DELETED;
}
ColumnDeletionHelper column_deletion_helper_;
RowDeletionHelper row_deletion_helper_;
struct RestoreInfo {
// The row index of the doubleton equality constraint, and its constant.
RowIndex row;
Fractional rhs; // The constant c in the equality aX + bY = c.
// The indices and the data of the two columns that we touched, exactly
// as they were beforehand.
ColIndex col[NUM_DOUBLETON_COLS];
Fractional coeff[NUM_DOUBLETON_COLS];
Fractional lb[NUM_DOUBLETON_COLS];
Fractional ub[NUM_DOUBLETON_COLS];
Fractional objective_coefficient[NUM_DOUBLETON_COLS];
// If the modified variable has status AT_[LOWER,UPPER]_BOUND, then we'll
// set one of the two original variables to one of its bounds, and set the
// other to VariableStatus::BASIC. We store this information (which variable
// will be set to one of its bounds, and which bound) for each possible
// outcome.
struct ColChoiceAndStatus {
ColChoice col_choice;
VariableStatus status;
Fractional value;
ColChoiceAndStatus() : col_choice(), status(), value(0.0) {}
ColChoiceAndStatus(ColChoice c, VariableStatus s, Fractional v)
: col_choice(c), status(s), value(v) {}
};
ColChoiceAndStatus bound_backtracking_at_lower_bound;
ColChoiceAndStatus bound_backtracking_at_upper_bound;
};
void SwapDeletedAndModifiedVariableRestoreInfo(RestoreInfo* r);
std::vector<RestoreInfo> restore_stack_;
DenseColumn saved_row_lower_bounds_;
DenseColumn saved_row_upper_bounds_;
ColumnsSaver columns_saver_;
DenseRow saved_objective_;
};
// Because of numerical imprecision, a preprocessor like
// DoubletonEqualityRowPreprocessor can transform a constraint/variable domain
// like [1, 1+1e-7] to a fixed domain (for ex by multiplying the above domain by
// 1e9). This causes an issue because at postsolve, a FIXED_VALUE status now
// needs to be transformed to a AT_LOWER_BOUND/AT_UPPER_BOUND status. This is
// what this function is doing for the constraint statuses only.
//
// TODO(user): A better solution would simply be to get rid of the FIXED status
// altogether, it is better to simply use AT_LOWER_BOUND/AT_UPPER_BOUND
// depending on the constraining bound in the optimal solution. Note that we can
// always at the end transform any variable/constraint with a fixed domain to
// FIXED_VALUE if needed to keep the same external API.
void FixConstraintWithFixedStatuses(const DenseColumn& row_lower_bounds,
const DenseColumn& row_upper_bounds,
ProblemSolution* solution);
// --------------------------------------------------------
// DualizerPreprocessor
// --------------------------------------------------------
// DualizerPreprocessor may change the given program to its dual depending
// on the value of the parameter solve_dual_problem.
//
// IMPORTANT: FreeConstraintPreprocessor() must be called first since this
// preprocessor does not deal correctly with free constraints.
class DualizerPreprocessor : public Preprocessor {
public:
explicit DualizerPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
DualizerPreprocessor(const DualizerPreprocessor&) = delete;
DualizerPreprocessor& operator=(const DualizerPreprocessor&) = delete;
~DualizerPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
void UseInMipContext() final {
LOG(FATAL) << "In the presence of integer variables, "
<< "there is no notion of a dual problem.";
}
// Convert the given problem status to the one of its dual.
ProblemStatus ChangeStatusToDualStatus(ProblemStatus status) const;
private:
DenseRow variable_lower_bounds_;
DenseRow variable_upper_bounds_;
RowIndex primal_num_rows_;
ColIndex primal_num_cols_;
bool primal_is_maximization_problem_;
RowToColMapping duplicated_rows_;
// For postsolving the variable/constraint statuses.
VariableStatusRow dual_status_correspondence_;
ColMapping slack_or_surplus_mapping_;
};
// --------------------------------------------------------
// ShiftVariableBoundsPreprocessor
// --------------------------------------------------------
// For each variable, inspects its bounds and "shift" them if necessary, so that
// its domain contains zero. A variable that was shifted will always have at
// least one of its bounds to zero. Doing it all at once allows to have a better
// precision when modifying the constraint bounds by using an accurate summation
// algorithm.
//
// Example:
// - A variable with bound [1e10, infinity] will be shifted to [0, infinity].
// - A variable with domain [-1e10, 1e10] will not be shifted. Note that
// compared to the first case, doing so here may introduce unnecessary
// numerical errors if the variable value in the final solution is close to
// zero.
//
// The expected impact of this is:
// - Better behavior of the scaling.
// - Better precision and numerical accuracy of the simplex method.
// - Slightly improved speed (because adding a column with a variable value of
// zero takes no work later).
//
// TODO(user): Having for each variable one of their bounds at zero is a
// requirement for the DualizerPreprocessor and for the implied free column in
// the ImpliedFreePreprocessor. However, shifting a variable with a domain like
// [-1e10, 1e10] may introduce numerical issues. Relax the definition of
// a free variable so that only having a domain containing 0.0 is enough?
class ShiftVariableBoundsPreprocessor : public Preprocessor {
public:
explicit ShiftVariableBoundsPreprocessor(const GlopParameters* parameters)
: Preprocessor(parameters) {}
ShiftVariableBoundsPreprocessor(const ShiftVariableBoundsPreprocessor&) =
delete;
ShiftVariableBoundsPreprocessor& operator=(
const ShiftVariableBoundsPreprocessor&) = delete;
~ShiftVariableBoundsPreprocessor() final {}
bool Run(LinearProgram* lp) final;
void RecoverSolution(ProblemSolution* solution) const final;
const DenseRow& offsets() const { return offsets_; }
private: