forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple_glop_program.cc
75 lines (65 loc) · 2.53 KB
/
simple_glop_program.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Minimal example to call the GLOP solver.
// [START program]
// [START import]
#include <iostream>
#include "ortools/glop/lp_solver.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_types.h"
// [END import]
namespace operations_research::glop {
int RunLinearExample() {
LinearProgram lp;
// Create the variables x and y.
ColIndex col_x = lp.FindOrCreateVariable("x");
lp.SetVariableBounds(col_x, 0.0, 1.0);
ColIndex col_y = lp.FindOrCreateVariable("y");
lp.SetVariableBounds(col_y, 0.0, 2.0);
// Create linear constraint: 0 <= x + y <= 2.
RowIndex row_r1 = lp.FindOrCreateConstraint("r1");
lp.SetConstraintBounds(row_r1, 0.0, 2.0);
lp.SetCoefficient(row_r1, col_x, 1);
lp.SetCoefficient(row_r1, col_y, 1);
// Create objective function: 3 * x + y.
lp.SetObjectiveCoefficient(col_x, 3);
lp.SetObjectiveCoefficient(col_y, 1);
lp.SetMaximizationProblem(true);
lp.CleanUp();
std::cout << "Number of variables = " << lp.num_variables() << std::endl;
std::cout << "Number of constraints = " << lp.num_constraints() << std::endl;
LPSolver solver;
GlopParameters parameters;
parameters.set_provide_strong_optimal_guarantee(true);
solver.SetParameters(parameters);
ProblemStatus status = solver.Solve(lp);
if (status == ProblemStatus::OPTIMAL) {
std::cout << "Optimal solution found !" << std::endl;
// The objective value of the solution.
std::cout << "Optimal objective value = " << solver.GetObjectiveValue()
<< std::endl;
// The value of each variable in the solution.
const DenseRow& values = solver.variable_values();
std::cout << "Solution:" << std::endl
<< "x = " << values[col_x] << std::endl
<< ", y = " << values[col_y] << std::endl;
return EXIT_SUCCESS;
} else {
return EXIT_FAILURE;
}
}
} // namespace operations_research::glop
int main(int argc, char** argv) {
return operations_research::glop::RunLinearExample();
}
// [END program]