forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cp_sat_example.py
executable file
·75 lines (65 loc) · 2.26 KB
/
cp_sat_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/env python3
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Simple solve."""
# [START import]
from ortools.sat.python import cp_model
# [END import]
def main():
"""Minimal CP-SAT example to showcase calling the solver."""
# Creates the model.
# [START model]
model = cp_model.CpModel()
# [END model]
# Creates the variables.
# [START variables]
var_upper_bound = max(50, 45, 37)
x = model.NewIntVar(0, var_upper_bound, 'x')
y = model.NewIntVar(0, var_upper_bound, 'y')
z = model.NewIntVar(0, var_upper_bound, 'z')
# [END variables]
# Creates the constraints.
# [START constraints]
model.Add(2 * x + 7 * y + 3 * z <= 50)
model.Add(3 * x - 5 * y + 7 * z <= 45)
model.Add(5 * x + 2 * y - 6 * z <= 37)
# [END constraints]
# [START objective]
model.Maximize(2 * x + 2 * y + 3 * z)
# [END objective]
# Creates a solver and solves the model.
# [START solve]
solver = cp_model.CpSolver()
status = solver.Solve(model)
# [END solve]
# [START print_solution]
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print(f'Maximum of objective function: {solver.ObjectiveValue()}\n')
print(f'x = {solver.Value(x)}')
print(f'y = {solver.Value(y)}')
print(f'z = {solver.Value(z)}')
else:
print('No solution found.')
# [END print_solution]
# Statistics.
# [START statistics]
print('\nStatistics')
print(f' status : {solver.StatusName(status)}')
print(f' conflicts: {solver.NumConflicts()}')
print(f' branches : {solver.NumBranches()}')
print(f' wall time: {solver.WallTime()} s')
# [END statistics]
if __name__ == '__main__':
main()
# [END program]