forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nqueens_sat.py
107 lines (90 loc) · 3.23 KB
/
nqueens_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python3
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""OR-Tools solution to the N-queens problem."""
# [START import]
import sys
import time
from ortools.sat.python import cp_model
# [END import]
# [START solution_printer]
class NQueenSolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, queens):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__queens = queens
self.__solution_count = 0
self.__start_time = time.time()
def solution_count(self):
return self.__solution_count
def on_solution_callback(self):
current_time = time.time()
print('Solution %i, time = %f s' %
(self.__solution_count, current_time - self.__start_time))
self.__solution_count += 1
all_queens = range(len(self.__queens))
for i in all_queens:
for j in all_queens:
if self.Value(self.__queens[j]) == i:
# There is a queen in column j, row i.
print('Q', end=' ')
else:
print('_', end=' ')
print()
print()
# [END solution_printer]
def main(board_size):
# Creates the solver.
# [START model]
model = cp_model.CpModel()
# [END model]
# Creates the variables.
# [START variables]
# The array index is the column, and the value is the row.
queens = [
model.NewIntVar(0, board_size - 1, 'x%i' % i) for i in range(board_size)
]
# [END variables]
# Creates the constraints.
# [START constraints]
# All rows must be different.
model.AddAllDifferent(queens)
# All columns must be different because the indices of queens are all
# different.
# No two queens can be on the same diagonal.
model.AddAllDifferent([queens[i] + i for i in range(board_size)])
model.AddAllDifferent([queens[i] - i for i in range(board_size)])
# [END constraints]
# Solve the model.
# [START solve]
solver = cp_model.CpSolver()
solution_printer = NQueenSolutionPrinter(queens)
solver.parameters.enumerate_all_solutions = True
solver.Solve(model, solution_printer)
# [END solve]
# Statistics.
# [START statistics]
print('\nStatistics')
print(f' conflicts : {solver.NumConflicts()}')
print(f' branches : {solver.NumBranches()}')
print(f' wall time : {solver.WallTime()} s')
print(f' solutions found: {solution_printer.solution_count()}')
# [END statistics]
if __name__ == '__main__':
# By default, solve the 8x8 problem.
size = 8
if len(sys.argv) > 1:
size = int(sys.argv[1])
main(size)
# [END program]