forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
overlapping_intervals_sample_sat.py
executable file
·96 lines (74 loc) · 3.45 KB
/
overlapping_intervals_sample_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python3
# Copyright 2010-2021 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Code sample to demonstrates how to detect if two intervals overlap."""
from ortools.sat.python import cp_model
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, variables):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
self.__solution_count = 0
def on_solution_callback(self):
self.__solution_count += 1
for v in self.__variables:
print('%s=%i' % (v, self.Value(v)), end=' ')
print()
def solution_count(self):
return self.__solution_count
def OverlappingIntervals():
"""Create the overlapping Boolean variables and enumerate all states."""
model = cp_model.CpModel()
horizon = 7
# First interval.
start_var_a = model.NewIntVar(0, horizon, 'start_a')
duration_a = 3
end_var_a = model.NewIntVar(0, horizon, 'end_a')
unused_interval_var_a = model.NewIntervalVar(start_var_a, duration_a,
end_var_a, 'interval_a')
# Second interval.
start_var_b = model.NewIntVar(0, horizon, 'start_b')
duration_b = 2
end_var_b = model.NewIntVar(0, horizon, 'end_b')
unused_interval_var_b = model.NewIntervalVar(start_var_b, duration_b,
end_var_b, 'interval_b')
# a_after_b Boolean variable.
a_after_b = model.NewBoolVar('a_after_b')
model.Add(start_var_a >= end_var_b).OnlyEnforceIf(a_after_b)
model.Add(start_var_a < end_var_b).OnlyEnforceIf(a_after_b.Not())
# b_after_a Boolean variable.
b_after_a = model.NewBoolVar('b_after_a')
model.Add(start_var_b >= end_var_a).OnlyEnforceIf(b_after_a)
model.Add(start_var_b < end_var_a).OnlyEnforceIf(b_after_a.Not())
# Result Boolean variable.
a_overlaps_b = model.NewBoolVar('a_overlaps_b')
# Option a: using only clauses
model.AddBoolOr([a_after_b, b_after_a, a_overlaps_b])
model.AddImplication(a_after_b, a_overlaps_b.Not())
model.AddImplication(b_after_a, a_overlaps_b.Not())
# Option b: using a sum() == 1.
# model.Add(a_after_b + b_after_a + a_overlaps_b == 1)
# Search for start values in increasing order for the two intervals.
model.AddDecisionStrategy([start_var_a, start_var_b], cp_model.CHOOSE_FIRST,
cp_model.SELECT_MIN_VALUE)
# Create a solver and solve with a fixed search.
solver = cp_model.CpSolver()
# Force the solver to follow the decision strategy exactly.
solver.parameters.search_branching = cp_model.FIXED_SEARCH
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
# Search and print out all solutions.
solution_printer = VarArraySolutionPrinter(
[start_var_a, start_var_b, a_overlaps_b])
solver.Solve(model, solution_printer)
OverlappingIntervals()