forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sat_solver.h
1045 lines (896 loc) · 42.8 KB
/
sat_solver.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file implements a SAT solver.
// see http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
// for more detail.
// TODO(user): Expand.
#ifndef OR_TOOLS_SAT_SAT_SOLVER_H_
#define OR_TOOLS_SAT_SAT_SOLVER_H_
#include <cstdint>
#include <functional>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/types/span.h"
#include "ortools/base/hash.h"
#include "ortools/base/int_type.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/base/timer.h"
#include "ortools/sat/clause.h"
#include "ortools/sat/drat_proof_handler.h"
#include "ortools/sat/model.h"
#include "ortools/sat/pb_constraint.h"
#include "ortools/sat/restart.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_decision.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/stats.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
namespace sat {
// A constant used by the EnqueueDecision*() API.
const int kUnsatTrailIndex = -1;
// The main SAT solver.
// It currently implements the CDCL algorithm. See
// http://en.wikipedia.org/wiki/Conflict_Driven_Clause_Learning
class SatSolver {
public:
SatSolver();
explicit SatSolver(Model* model);
~SatSolver();
// TODO(user): Remove. This is temporary for accessing the model deep within
// some old code that didn't use the Model object.
Model* model() { return model_; }
// Parameters management. Note that calling SetParameters() will reset the
// value of many heuristics. For instance:
// - The restart strategy will be reinitialized.
// - The random seed and random generator will be reset to the value given in
// parameters.
// - The global TimeLimit singleton will be reset and time will be
// counted from this call.
void SetParameters(const SatParameters& parameters);
const SatParameters& parameters() const;
// Increases the number of variables of the current problem.
//
// TODO(user): Rename to IncreaseNumVariablesTo() until we support removing
// variables...
void SetNumVariables(int num_variables);
int NumVariables() const { return num_variables_.value(); }
BooleanVariable NewBooleanVariable() {
const int num_vars = NumVariables();
// We need to be able to encode the variable as a literal.
CHECK_LT(2 * num_vars, std::numeric_limits<int32_t>::max());
SetNumVariables(num_vars + 1);
return BooleanVariable(num_vars);
}
// Fixes a variable so that the given literal is true. This can be used to
// solve a subproblem where some variables are fixed. Note that it is more
// efficient to add such unit clause before all the others.
// Returns false if the problem is detected to be UNSAT.
bool AddUnitClause(Literal true_literal);
// Same as AddProblemClause() below, but for small clauses.
//
// TODO(user): Remove this and AddUnitClause() when initializer lists can be
// used in the open-source code like in AddClause({a, b}).
bool AddBinaryClause(Literal a, Literal b);
bool AddTernaryClause(Literal a, Literal b, Literal c);
// Adds a clause to the problem. Returns false if the problem is detected to
// be UNSAT.
//
// TODO(user): Rename this to AddClause().
bool AddProblemClause(absl::Span<const Literal> literals);
// Adds a pseudo-Boolean constraint to the problem. Returns false if the
// problem is detected to be UNSAT. If the constraint is always true, this
// detects it and does nothing.
//
// Note(user): There is an optimization if the same constraint is added
// consecutively (even if the bounds are different). This is particularly
// useful for an optimization problem when we want to constrain the objective
// of the problem more and more. Just re-adding such constraint is relatively
// efficient.
//
// OVERFLOW: The sum of the absolute value of all the coefficients
// in the constraint must not overflow. This is currently CHECKed().
// TODO(user): Instead of failing, implement an error handling code.
bool AddLinearConstraint(bool use_lower_bound, Coefficient lower_bound,
bool use_upper_bound, Coefficient upper_bound,
std::vector<LiteralWithCoeff>* cst);
// Returns true if the model is UNSAT. Note that currently the status is
// "sticky" and once this happen, nothing else can be done with the solver.
//
// Thanks to this function, a client can safely ignore the return value of any
// Add*() functions. If one of them return false, then IsModelUnsat() will
// return true.
//
// TODO(user): Rename to ModelIsUnsat().
bool IsModelUnsat() const { return model_is_unsat_; }
// Adds and registers the given propagator with the sat solver. Note that
// during propagation, they will be called in the order they were added.
void AddPropagator(SatPropagator* propagator);
void AddLastPropagator(SatPropagator* propagator);
void TakePropagatorOwnership(std::unique_ptr<SatPropagator> propagator) {
owned_propagators_.push_back(std::move(propagator));
}
// Wrapper around the same functions in SatDecisionPolicy.
//
// TODO(user): Clean this up by making clients directly talk to
// SatDecisionPolicy.
void SetAssignmentPreference(Literal literal, double weight) {
decision_policy_->SetAssignmentPreference(literal, weight);
}
std::vector<std::pair<Literal, double>> AllPreferences() const {
return decision_policy_->AllPreferences();
}
void ResetDecisionHeuristic() {
return decision_policy_->ResetDecisionHeuristic();
}
void ResetDecisionHeuristicAndSetAllPreferences(
const std::vector<std::pair<Literal, double>>& prefs) {
decision_policy_->ResetDecisionHeuristic();
for (const std::pair<Literal, double> p : prefs) {
decision_policy_->SetAssignmentPreference(p.first, p.second);
}
}
// Solves the problem and returns its status.
// An empty problem is considered to be SAT.
//
// Note that the conflict limit applies only to this function and starts
// counting from the time it is called.
//
// This will restart from the current solver configuration. If a previous call
// to Solve() was interrupted by a conflict or time limit, calling this again
// will resume the search exactly as it would have continued.
//
// Note that this will use the TimeLimit singleton, so the time limit
// will be counted since the last time TimeLimit was reset, not from
// the start of this function.
enum Status {
ASSUMPTIONS_UNSAT,
INFEASIBLE,
FEASIBLE,
LIMIT_REACHED,
};
Status Solve();
// Same as Solve(), but with a given time limit. Note that this will not
// update the TimeLimit singleton, but only the passed object instead.
Status SolveWithTimeLimit(TimeLimit* time_limit);
// Simple interface to solve a problem under the given assumptions. This
// simply ask the solver to solve a problem given a set of variables fixed to
// a given value (the assumptions). Compared to simply calling AddUnitClause()
// and fixing the variables once and for all, this allow to backtrack over the
// assumptions and thus exploit the incrementally between subsequent solves.
//
// This function backtrack over all the current decision, tries to enqueue the
// given assumptions, sets the assumption level accordingly and finally calls
// Solve().
//
// If, given these assumptions, the model is UNSAT, this returns the
// ASSUMPTIONS_UNSAT status. INFEASIBLE is reserved for the case where the
// model is proven to be unsat without any assumptions.
//
// If ASSUMPTIONS_UNSAT is returned, it is possible to get a "core" of unsat
// assumptions by calling GetLastIncompatibleDecisions().
Status ResetAndSolveWithGivenAssumptions(
const std::vector<Literal>& assumptions);
// Changes the assumption level. All the decisions below this level will be
// treated as assumptions by the next Solve(). Note that this may impact some
// heuristics, like the LBD value of a clause.
void SetAssumptionLevel(int assumption_level);
// Returns the current assumption level. Note that if a solve was done since
// the last SetAssumptionLevel(), then the returned level may be lower than
// the one that was set. This is because some assumptions may now be
// consequences of others before them due to the newly learned clauses.
int AssumptionLevel() const { return assumption_level_; }
// This can be called just after SolveWithAssumptions() returned
// ASSUMPTION_UNSAT or after EnqueueDecisionAndBacktrackOnConflict() leaded
// to a conflict. It returns a subsequence (in the correct order) of the
// previously enqueued decisions that cannot be taken together without making
// the problem UNSAT.
std::vector<Literal> GetLastIncompatibleDecisions();
// Advanced usage. The next 3 functions allow to drive the search from outside
// the solver.
// Takes a new decision (the given true_literal must be unassigned) and
// propagates it. Returns the trail index of the first newly propagated
// literal. If there is a conflict and the problem is detected to be UNSAT,
// returns kUnsatTrailIndex.
//
// A client can determine if there is a conflict by checking if the
// CurrentDecisionLevel() was increased by 1 or not.
//
// If there is a conflict, the given decision is not applied and:
// - The conflict is learned.
// - The decisions are potentially backtracked to the first decision that
// propagates more variables because of the newly learned conflict.
// - The returned value is equal to trail_->Index() after this backtracking
// and just before the new propagation (due to the conflict) which is also
// performed by this function.
int EnqueueDecisionAndBackjumpOnConflict(Literal true_literal);
// This function starts by calling EnqueueDecisionAndBackjumpOnConflict(). If
// there is no conflict, it stops there. Otherwise, it tries to reapply all
// the decisions that were backjumped over until the first one that can't be
// taken because it is incompatible. Note that during this process, more
// conflicts may happen and the trail may be backtracked even further.
//
// In any case, the new decisions stack will be the largest valid "prefix"
// of the old stack. Note that decisions that are now consequence of the ones
// before them will no longer be decisions.
//
// Note(user): This function can be called with an already assigned literal.
int EnqueueDecisionAndBacktrackOnConflict(Literal true_literal);
// Tries to enqueue the given decision and performs the propagation.
// Returns true if no conflict occurred. Otherwise, returns false and restores
// the solver to the state just before this was called.
//
// Note(user): With this function, the solver doesn't learn anything.
bool EnqueueDecisionIfNotConflicting(Literal true_literal);
// Restores the state to the given target decision level. The decision at that
// level and all its propagation will not be undone. But all the trail after
// this will be cleared. Calling this with 0 will revert all the decisions and
// only the fixed variables will be left on the trail.
void Backtrack(int target_level);
// Advanced usage. This is meant to restore the solver to a "proper" state
// after a solve was interupted due to a limit reached.
//
// Without assumption (i.e. if AssumptionLevel() is 0), this will revert all
// decisions and make sure that all the fixed literals are propagated. In
// presence of assumptions, this will either backtrack to the assumption level
// or re-enqueue any assumptions that may have been backtracked over due to
// conflits resolution. In both cases, the propagation is finished.
//
// Note that this may prove the model to be UNSAT or ASSUMPTION_UNSAT in which
// case it will return false.
bool RestoreSolverToAssumptionLevel();
// Advanced usage. Finish the progation if it was interupted. Note that this
// might run into conflict and will propagate again until a fixed point is
// reached or the model was proven UNSAT. Returns IsModelUnsat().
bool FinishPropagation();
// Like Backtrack(0) but make sure the propagation is finished and return
// false if unsat was detected. This also removes any assumptions level.
bool ResetToLevelZero();
// Changes the assumptions level and the current solver assumptions. Returns
// false if the model is UNSAT or ASSUMPTION_UNSAT, true otherwise.
bool ResetWithGivenAssumptions(const std::vector<Literal>& assumptions);
// Advanced usage. If the decision level is smaller than the assumption level,
// this will try to reapply all assumptions. Returns true if this was doable,
// otherwise returns false in which case the model is either UNSAT or
// ASSUMPTION_UNSAT.
bool ReapplyAssumptionsIfNeeded();
// Helper functions to get the correct status when one of the functions above
// returns false.
Status UnsatStatus() const {
return IsModelUnsat() ? INFEASIBLE : ASSUMPTIONS_UNSAT;
}
// Extract the current problem clauses. The Output type must support the two
// functions:
// - void AddBinaryClause(Literal a, Literal b);
// - void AddClause(absl::Span<const Literal> clause);
//
// TODO(user): also copy the removable clauses?
template <typename Output>
void ExtractClauses(Output* out) {
CHECK(!IsModelUnsat());
Backtrack(0);
if (!FinishPropagation()) return;
// It is important to process the newly fixed variables, so they are not
// present in the clauses we export.
if (num_processed_fixed_variables_ < trail_->Index()) {
ProcessNewlyFixedVariables();
}
clauses_propagator_->DeleteRemovedClauses();
// Note(user): Putting the binary clauses first help because the presolver
// currently process the clauses in order.
out->SetNumVariables(NumVariables());
binary_implication_graph_->ExtractAllBinaryClauses(out);
for (SatClause* clause : clauses_propagator_->AllClausesInCreationOrder()) {
if (!clauses_propagator_->IsRemovable(clause)) {
out->AddClause(clause->AsSpan());
}
}
}
// Functions to manage the set of learned binary clauses.
// Only clauses added/learned when TrackBinaryClause() is true are managed.
void TrackBinaryClauses(bool value) { track_binary_clauses_ = value; }
bool AddBinaryClauses(const std::vector<BinaryClause>& clauses);
const std::vector<BinaryClause>& NewlyAddedBinaryClauses();
void ClearNewlyAddedBinaryClauses();
struct Decision {
Decision() {}
Decision(int i, Literal l) : trail_index(i), literal(l) {}
int trail_index = 0;
Literal literal;
};
// Note that the Decisions() vector is always of size NumVariables(), and that
// only the first CurrentDecisionLevel() entries have a meaning.
const std::vector<Decision>& Decisions() const { return decisions_; }
int CurrentDecisionLevel() const { return current_decision_level_; }
const Trail& LiteralTrail() const { return *trail_; }
const VariablesAssignment& Assignment() const { return trail_->Assignment(); }
// Some statistics since the creation of the solver.
int64_t num_branches() const;
int64_t num_failures() const;
int64_t num_propagations() const;
// Note that we count the number of backtrack to level zero from a positive
// level. Those can corresponds to actual restarts, or conflicts that learn
// unit clauses or any other reason that trigger such backtrack.
int64_t num_restarts() const;
// A deterministic number that should be correlated with the time spent in
// the Solve() function. The order of magnitude should be close to the time
// in seconds.
double deterministic_time() const;
// Only used for debugging. Save the current assignment in debug_assignment_.
// The idea is that if we know that a given assignment is satisfiable, then
// all the learned clauses or PB constraints must be satisfiable by it. In
// debug mode, and after this is called, all the learned clauses are tested to
// satisfy this saved assignement.
void SaveDebugAssignment();
// Returns true iff the loaded problem only contains clauses.
bool ProblemIsPureSat() const { return problem_is_pure_sat_; }
void SetDratProofHandler(DratProofHandler* drat_proof_handler) {
drat_proof_handler_ = drat_proof_handler;
clauses_propagator_->SetDratProofHandler(drat_proof_handler_);
binary_implication_graph_->SetDratProofHandler(drat_proof_handler_);
}
// This function is here to deal with the case where a SAT/CP model is found
// to be trivially UNSAT while the user is constructing the model. Instead of
// having to test the status of all the lines adding a constraint, one can
// just check if the solver is not UNSAT once the model is constructed. Note
// that we usually log a warning on the first constraint that caused a
// "trival" unsatisfiability.
void NotifyThatModelIsUnsat() { model_is_unsat_ = true; }
// Adds a clause at any level of the tree and propagate any new deductions.
// Returns false if the model becomes UNSAT. Important: We currently do not
// support adding a clause that is already falsified at a positive decision
// level. Doing that will cause a check fail.
//
// TODO(user): Backjump and propagate on a falsified clause? this is currently
// not needed.
bool AddClauseDuringSearch(absl::Span<const Literal> literals);
// Performs propagation of the recently enqueued elements.
// Mainly visible for testing.
bool Propagate();
// This must be called at level zero. It will spend the given num decision and
// use propagation to try to minimize some clauses from the database.
void MinimizeSomeClauses(int decisions_budget);
// Advance the given time limit with all the deterministic time that was
// elapsed since last call.
void AdvanceDeterministicTime(TimeLimit* limit) {
const double current = deterministic_time();
limit->AdvanceDeterministicTime(
current - deterministic_time_at_last_advanced_time_limit_);
deterministic_time_at_last_advanced_time_limit_ = current;
}
// Simplifies the problem when new variables are assigned at level 0.
void ProcessNewlyFixedVariables();
int64_t NumFixedVariables() const {
if (!decisions_.empty()) return decisions_[0].trail_index;
CHECK_EQ(CurrentDecisionLevel(), 0);
return trail_->Index();
}
private:
// Calls Propagate() and returns true if no conflict occurred. Otherwise,
// learns the conflict, backtracks, enqueues the consequence of the learned
// conflict and returns false.
bool PropagateAndStopAfterOneConflictResolution();
// All Solve() functions end up calling this one.
Status SolveInternal(TimeLimit* time_limit);
// Adds a binary clause to the BinaryImplicationGraph and to the
// BinaryClauseManager when track_binary_clauses_ is true.
void AddBinaryClauseInternal(Literal a, Literal b);
// See SaveDebugAssignment(). Note that these functions only consider the
// variables at the time the debug_assignment_ was saved. If new variables
// were added since that time, they will be considered unassigned.
bool ClauseIsValidUnderDebugAssignement(
const std::vector<Literal>& clause) const;
bool PBConstraintIsValidUnderDebugAssignment(
const std::vector<LiteralWithCoeff>& cst, const Coefficient rhs) const;
// Logs the given status if parameters_.log_search_progress() is true.
// Also returns it.
Status StatusWithLog(Status status);
// Main function called from SolveWithAssumptions() or from Solve() with an
// assumption_level of 0 (meaning no assumptions).
Status SolveInternal(int assumption_level);
// Applies the previous decisions (which are still on decisions_), in order,
// starting from the one at the current decision level. Stops at the one at
// decisions_[level] or on the first decision already propagated to "false"
// and thus incompatible.
//
// Note that during this process, conflicts may arise which will lead to
// backjumps. In this case, we will simply keep reapplying decisions from the
// last one backtracked over and so on.
//
// Returns FEASIBLE if no conflict occurred, INFEASIBLE if the model was
// proven unsat and ASSUMPTION_UNSAT otherwise. In the last case the first non
// taken old decision will be propagated to false by the ones before.
//
// first_propagation_index will be filled with the trail index of the first
// newly propagated literal, or with -1 if INFEASIBLE is returned.
Status ReapplyDecisionsUpTo(int level, int* first_propagation_index);
// Returns false if the thread memory is over the limit.
bool IsMemoryLimitReached() const;
// Sets model_is_unsat_ to true and return false.
bool SetModelUnsat();
// Returns the decision level of a given variable.
int DecisionLevel(BooleanVariable var) const {
return trail_->Info(var).level;
}
// Returns the relevant pointer if the given variable was propagated by the
// constraint in question. This is used to bump the activity of the learned
// clauses or pb constraints.
SatClause* ReasonClauseOrNull(BooleanVariable var) const;
UpperBoundedLinearConstraint* ReasonPbConstraintOrNull(
BooleanVariable var) const;
// This does one step of a pseudo-Boolean resolution:
// - The variable var has been assigned to l at a given trail_index.
// - The reason for var propagates it to l.
// - The conflict propagates it to not(l)
// The goal of the operation is to combine the two constraints in order to
// have a new conflict at a lower trail_index.
//
// Returns true if the reason for var was a normal clause. In this case,
// the *slack is updated to its new value.
bool ResolvePBConflict(BooleanVariable var,
MutableUpperBoundedLinearConstraint* conflict,
Coefficient* slack);
// Returns true iff the clause is the reason for an assigned variable.
//
// TODO(user): With our current data structures, we could also return true
// for clauses that were just used as a reason (like just before an untrail).
// This may be beneficial, but should properly be defined so that we can
// have the same behavior if we change the implementation.
bool ClauseIsUsedAsReason(SatClause* clause) const {
const BooleanVariable var = clause->PropagatedLiteral().Variable();
return trail_->Info(var).trail_index < trail_->Index() &&
(*trail_)[trail_->Info(var).trail_index].Variable() == var &&
ReasonClauseOrNull(var) == clause;
}
// Add a problem clause. The clause is assumed to be "cleaned", that is no
// duplicate variables (not strictly required) and not empty.
bool AddProblemClauseInternal(absl::Span<const Literal> literals);
// This is used by all the Add*LinearConstraint() functions. It detects
// infeasible/trivial constraints or clause constraints and takes the proper
// action.
bool AddLinearConstraintInternal(const std::vector<LiteralWithCoeff>& cst,
Coefficient rhs, Coefficient max_value);
// Adds a learned clause to the problem. This should be called after
// Backtrack(). The backtrack is such that after it is applied, all the
// literals of the learned close except one will be false. Thus the last one
// will be implied True. This function also Enqueue() the implied literal.
//
// Returns the LBD of the clause.
int AddLearnedClauseAndEnqueueUnitPropagation(
const std::vector<Literal>& literals, bool is_redundant);
// Creates a new decision which corresponds to setting the given literal to
// True and Enqueue() this change.
void EnqueueNewDecision(Literal literal);
// Returns true if everything has been propagated.
//
// TODO(user): This test is fast but not exhaustive, especially regarding the
// integer propagators. Fix.
bool PropagationIsDone() const;
// Update the propagators_ list with the relevant propagators.
void InitializePropagators();
// Unrolls the trail until a given point. This unassign the assigned variables
// and add them to the priority queue with the correct weight.
void Untrail(int target_trail_index);
// Output to the DRAT proof handler any newly fixed variables.
void ProcessNewlyFixedVariablesForDratProof();
// Returns the maximum trail_index of the literals in the given clause.
// All the literals must be assigned. Returns -1 if the clause is empty.
int ComputeMaxTrailIndex(absl::Span<const Literal> clause) const;
// Computes what is known as the first UIP (Unique implication point) conflict
// clause starting from the failing clause. For a definition of UIP and a
// comparison of the different possible conflict clause computation, see the
// reference below.
//
// The conflict will have only one literal at the highest decision level, and
// this literal will always be the first in the conflict vector.
//
// L Zhang, CF Madigan, MH Moskewicz, S Malik, "Efficient conflict driven
// learning in a boolean satisfiability solver" Proceedings of the 2001
// IEEE/ACM international conference on Computer-aided design, Pages 279-285.
// http://www.cs.tau.ac.il/~msagiv/courses/ATP/iccad2001_final.pdf
void ComputeFirstUIPConflict(
int max_trail_index, std::vector<Literal>* conflict,
std::vector<Literal>* reason_used_to_infer_the_conflict,
std::vector<SatClause*>* subsumed_clauses);
// Fills literals with all the literals in the reasons of the literals in the
// given input. The output vector will have no duplicates and will not contain
// the literals already present in the input.
void ComputeUnionOfReasons(const std::vector<Literal>& input,
std::vector<Literal>* literals);
// Given an assumption (i.e. literal) currently assigned to false, this will
// returns the set of all assumptions that caused this particular assignment.
//
// This is useful to get a small set of assumptions that can't be all
// satisfied together.
void FillUnsatAssumptions(Literal false_assumption,
std::vector<Literal>* unsat_assumptions);
// Do the full pseudo-Boolean constraint analysis. This calls multiple
// time ResolvePBConflict() on the current conflict until we have a conflict
// that allow us to propagate more at a lower decision level. This level
// is the one returned in backjump_level.
void ComputePBConflict(int max_trail_index, Coefficient initial_slack,
MutableUpperBoundedLinearConstraint* conflict,
int* backjump_level);
// Applies some heuristics to a conflict in order to minimize its size and/or
// replace literals by other literals from lower decision levels. The first
// function choose which one of the other functions to call depending on the
// parameters.
//
// Precondidtion: is_marked_ should be set to true for all the variables of
// the conflict. It can also contains false non-conflict variables that
// are implied by the negation of the 1-UIP conflict literal.
void MinimizeConflict(
std::vector<Literal>* conflict,
std::vector<Literal>* reason_used_to_infer_the_conflict);
void MinimizeConflictExperimental(std::vector<Literal>* conflict);
void MinimizeConflictSimple(std::vector<Literal>* conflict);
void MinimizeConflictRecursively(std::vector<Literal>* conflict);
// Utility function used by MinimizeConflictRecursively().
bool CanBeInferedFromConflictVariables(BooleanVariable variable);
// To be used in DCHECK(). Verifies some property of the conflict clause:
// - There is an unique literal with the highest decision level.
// - This literal appears in the first position.
// - All the other literals are of smaller decision level.
// - Ther is no literal with a decision level of zero.
bool IsConflictValid(const std::vector<Literal>& literals);
// Given the learned clause after a conflict, this computes the correct
// backtrack level to call Backtrack() with.
int ComputeBacktrackLevel(const std::vector<Literal>& literals);
// The LBD (Literal Blocks Distance) is the number of different decision
// levels at which the literals of the clause were assigned. Note that we
// ignore the decision level 0 whereas the definition in the paper below
// doesn't:
//
// G. Audemard, L. Simon, "Predicting Learnt Clauses Quality in Modern SAT
// Solver" in Twenty-first International Joint Conference on Artificial
// Intelligence (IJCAI'09), july 2009.
// http://www.ijcai.org/papers09/Papers/IJCAI09-074.pdf
//
// IMPORTANT: All the literals of the clause must be assigned, and the first
// literal must be of the highest decision level. This will be the case for
// all the reason clauses.
template <typename LiteralList>
int ComputeLbd(const LiteralList& literals);
// Checks if we need to reduce the number of learned clauses and do
// it if needed. Also updates the learned clause limit for the next cleanup.
void CleanClauseDatabaseIfNeeded();
// Activity management for clauses. This work the same way at the ones for
// variables, but with different parameters.
void BumpReasonActivities(const std::vector<Literal>& literals);
void BumpClauseActivity(SatClause* clause);
void RescaleClauseActivities(double scaling_factor);
void UpdateClauseActivityIncrement();
std::string DebugString(const SatClause& clause) const;
std::string StatusString(Status status) const;
std::string RunningStatisticsString() const;
// Marks as "non-deletable" all clauses that were used to infer the given
// variable. The variable must be currently assigned.
void KeepAllClauseUsedToInfer(BooleanVariable variable);
// Use propagation to try to minimize the given clause. This is really similar
// to MinimizeCoreWithPropagation(). It must be called when the current
// decision level is zero. Note that because this do a small tree search, it
// will impact the variable/clauses activities and may add new conflicts.
void TryToMinimizeClause(SatClause* clause);
// This is used by the old non-model constructor.
Model* model_;
std::unique_ptr<Model> owned_model_;
BooleanVariable num_variables_ = BooleanVariable(0);
// Internal propagators. We keep them here because we need more than the
// SatPropagator interface for them.
BinaryImplicationGraph* binary_implication_graph_;
LiteralWatchers* clauses_propagator_;
PbConstraints* pb_constraints_;
// Ordered list of propagators used by Propagate()/Untrail().
std::vector<SatPropagator*> propagators_;
// Ordered list of propagators added with AddPropagator().
std::vector<SatPropagator*> external_propagators_;
SatPropagator* last_propagator_ = nullptr;
// For the old, non-model interface.
std::vector<std::unique_ptr<SatPropagator>> owned_propagators_;
// Keep track of all binary clauses so they can be exported.
bool track_binary_clauses_;
BinaryClauseManager binary_clauses_;
// Pointers to singleton Model objects.
Trail* trail_;
TimeLimit* time_limit_;
SatParameters* parameters_;
RestartPolicy* restart_;
SatDecisionPolicy* decision_policy_;
// Used for debugging only. See SaveDebugAssignment().
VariablesAssignment debug_assignment_;
// The stack of decisions taken by the solver. They are stored in [0,
// current_decision_level_). The vector is of size num_variables_ so it can
// store all the decisions. This is done this way because in some situation we
// need to remember the previously taken decisions after a backtrack.
int current_decision_level_ = 0;
std::vector<Decision> decisions_;
// The trail index after the last Backtrack() call or before the last
// EnqueueNewDecision() call.
int last_decision_or_backtrack_trail_index_ = 0;
// The assumption level. See SolveWithAssumptions().
int assumption_level_ = 0;
// The size of the trail when ProcessNewlyFixedVariables() was last called.
// Note that the trail contains only fixed literals (that is literals of
// decision levels 0) before this point.
int num_processed_fixed_variables_ = 0;
double deterministic_time_of_last_fixed_variables_cleanup_ = 0.0;
// Used in ProcessNewlyFixedVariablesForDratProof().
int drat_num_processed_fixed_variables_ = 0;
// Tracks various information about the solver progress.
struct Counters {
int64_t num_branches = 0;
int64_t num_failures = 0;
int64_t num_restarts = 0;
// Minimization stats.
int64_t num_minimizations = 0;
int64_t num_literals_removed = 0;
// PB constraints.
int64_t num_learned_pb_literals = 0;
// Clause learning /deletion stats.
int64_t num_literals_learned = 0;
int64_t num_literals_forgotten = 0;
int64_t num_subsumed_clauses = 0;
// TryToMinimizeClause() stats.
int64_t minimization_num_clauses = 0;
int64_t minimization_num_decisions = 0;
int64_t minimization_num_true = 0;
int64_t minimization_num_subsumed = 0;
int64_t minimization_num_removed_literals = 0;
};
Counters counters_;
// Solver information.
WallTimer timer_;
// This is set to true if the model is found to be UNSAT when adding new
// constraints.
bool model_is_unsat_ = false;
// Increment used to bump the variable activities.
double clause_activity_increment_;
// This counter is decremented each time we learn a clause that can be
// deleted. When it reaches zero, a clause cleanup is triggered.
int num_learned_clause_before_cleanup_ = 0;
// Temporary members used during conflict analysis.
SparseBitset<BooleanVariable> is_marked_;
SparseBitset<BooleanVariable> is_independent_;
SparseBitset<BooleanVariable> tmp_mark_;
std::vector<int> min_trail_index_per_level_;
// Temporary members used by CanBeInferedFromConflictVariables().
std::vector<BooleanVariable> dfs_stack_;
std::vector<BooleanVariable> variable_to_process_;
// Temporary member used by AddLinearConstraintInternal().
std::vector<Literal> literals_scratchpad_;
// A boolean vector used to temporarily mark decision levels.
DEFINE_INT_TYPE(SatDecisionLevel, int);
SparseBitset<SatDecisionLevel> is_level_marked_;
// Temporary vectors used by EnqueueDecisionAndBackjumpOnConflict().
std::vector<Literal> learned_conflict_;
std::vector<Literal> reason_used_to_infer_the_conflict_;
std::vector<Literal> extra_reason_literals_;
std::vector<SatClause*> subsumed_clauses_;
// When true, temporarily disable the deletion of clauses that are not needed
// anymore. This is a hack for TryToMinimizeClause() because we use
// propagation in this function which might trigger a clause database
// deletion, but we still want the pointer to the clause we wants to minimize
// to be valid until the end of that function.
bool block_clause_deletion_ = false;
// "cache" to avoid inspecting many times the same reason during conflict
// analysis.
VariableWithSameReasonIdentifier same_reason_identifier_;
// Temporary vector used by AddProblemClause().
std::vector<LiteralWithCoeff> tmp_pb_constraint_;
// Boolean used to include/exclude constraints from the core computation.
bool is_relevant_for_core_computation_;
// The current pseudo-Boolean conflict used in PB conflict analysis.
MutableUpperBoundedLinearConstraint pb_conflict_;
// The deterministic time when the time limit was updated.
// As the deterministic time in the time limit has to be advanced manually,
// it is necessary to keep track of the last time the time was advanced.
double deterministic_time_at_last_advanced_time_limit_ = 0;
// This is true iff the loaded problem only contains clauses.
bool problem_is_pure_sat_;
DratProofHandler* drat_proof_handler_;
mutable StatsGroup stats_;
DISALLOW_COPY_AND_ASSIGN(SatSolver);
};
// Tries to minimize the given UNSAT core with a really simple heuristic.
// The idea is to remove literals that are consequences of others in the core.
// We already know that in the initial order, no literal is propagated by the
// one before it, so we just look for propagation in the reverse order.
//
// Important: The given SatSolver must be the one that just produced the given
// core.
void MinimizeCore(SatSolver* solver, std::vector<Literal>* core);
// ============================================================================
// Model based functions.
//
// TODO(user): move them in another file, and unit-test them.
// ============================================================================
inline std::function<void(Model*)> BooleanLinearConstraint(
int64_t lower_bound, int64_t upper_bound,
std::vector<LiteralWithCoeff>* cst) {
return [=](Model* model) {
model->GetOrCreate<SatSolver>()->AddLinearConstraint(
/*use_lower_bound=*/true, Coefficient(lower_bound),
/*use_upper_bound=*/true, Coefficient(upper_bound), cst);
};
}
inline std::function<void(Model*)> CardinalityConstraint(
int64_t lower_bound, int64_t upper_bound,
const std::vector<Literal>& literals) {
return [=](Model* model) {
std::vector<LiteralWithCoeff> cst;
cst.reserve(literals.size());
for (int i = 0; i < literals.size(); ++i) {
cst.emplace_back(literals[i], 1);
}
model->GetOrCreate<SatSolver>()->AddLinearConstraint(
/*use_lower_bound=*/true, Coefficient(lower_bound),
/*use_upper_bound=*/true, Coefficient(upper_bound), &cst);
};
}
inline std::function<void(Model*)> ExactlyOneConstraint(
const std::vector<Literal>& literals) {
return [=](Model* model) {
std::vector<LiteralWithCoeff> cst;
cst.reserve(literals.size());
for (const Literal l : literals) {
cst.emplace_back(l, Coefficient(1));
}
model->GetOrCreate<SatSolver>()->AddLinearConstraint(
/*use_lower_bound=*/true, Coefficient(1),
/*use_upper_bound=*/true, Coefficient(1), &cst);
};
}
inline std::function<void(Model*)> AtMostOneConstraint(
const std::vector<Literal>& literals) {
return [=](Model* model) {
std::vector<LiteralWithCoeff> cst;
cst.reserve(literals.size());
for (const Literal l : literals) {
cst.emplace_back(l, Coefficient(1));
}
model->GetOrCreate<SatSolver>()->AddLinearConstraint(
/*use_lower_bound=*/false, Coefficient(0),
/*use_upper_bound=*/true, Coefficient(1), &cst);
};
}
inline std::function<void(Model*)> ClauseConstraint(
absl::Span<const Literal> literals) {
return [=](Model* model) {
std::vector<LiteralWithCoeff> cst;
cst.reserve(literals.size());
for (const Literal l : literals) {
cst.emplace_back(l, Coefficient(1));
}
model->GetOrCreate<SatSolver>()->AddLinearConstraint(
/*use_lower_bound=*/true, Coefficient(1),
/*use_upper_bound=*/false, Coefficient(1), &cst);
};
}
// a => b.
inline std::function<void(Model*)> Implication(Literal a, Literal b) {
return [=](Model* model) {
model->GetOrCreate<SatSolver>()->AddBinaryClause(a.Negated(), b);
};
}
// a == b.
inline std::function<void(Model*)> Equality(Literal a, Literal b) {
return [=](Model* model) {
model->GetOrCreate<SatSolver>()->AddBinaryClause(a.Negated(), b);
model->GetOrCreate<SatSolver>()->AddBinaryClause(a, b.Negated());
};
}
// r <=> (at least one literal is true). This is a reified clause.
inline std::function<void(Model*)> ReifiedBoolOr(
const std::vector<Literal>& literals, Literal r) {
return [=](Model* model) {
std::vector<Literal> clause;
for (const Literal l : literals) {
model->Add(Implication(l, r)); // l => r.
clause.push_back(l);
}
// All false => r false.
clause.push_back(r.Negated());
model->Add(ClauseConstraint(clause));
};
}
// enforcement_literals => clause.
inline std::function<void(Model*)> EnforcedClause(
absl::Span<const Literal> enforcement_literals,
absl::Span<const Literal> clause) {
return [=](Model* model) {
std::vector<Literal> tmp;
for (const Literal l : enforcement_literals) {
tmp.push_back(l.Negated());
}
for (const Literal l : clause) {
tmp.push_back(l);
}
model->Add(ClauseConstraint(tmp));
};
}
// r <=> (all literals are true).
//
// Note(user): we could have called ReifiedBoolOr() with everything negated.
inline std::function<void(Model*)> ReifiedBoolAnd(
const std::vector<Literal>& literals, Literal r) {
return [=](Model* model) {
std::vector<Literal> clause;
for (const Literal l : literals) {
model->Add(Implication(r, l)); // r => l.
clause.push_back(l.Negated());
}
// All true => r true.
clause.push_back(r);
model->Add(ClauseConstraint(clause));
};
}
// r <=> (a <= b).
inline std::function<void(Model*)> ReifiedBoolLe(Literal a, Literal b,
Literal r) {
return [=](Model* model) {
// r <=> (a <= b) is the same as r <=> not(a=1 and b=0).
// So r <=> a=0 OR b=1.
model->Add(ReifiedBoolOr({a.Negated(), b}, r));
};
}
// This checks that the variable is fixed.
inline std::function<int64_t(const Model&)> Value(Literal l) {
return [=](const Model& model) {
const Trail* trail = model.Get<Trail>();
CHECK(trail->Assignment().VariableIsAssigned(l.Variable()));
return trail->Assignment().LiteralIsTrue(l);