-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
136 lines (109 loc) · 5.13 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#include <iostream>
#include <cmath>
#include "kinematics/kinematic_chain_factory.h"
#include "kinematics/forward_kinematics_solver.h"
#include "kinematics/collision_checker.h"
#include "kinematics/dynamic_joint_state.h"
#include "planner/trajectory_planner.h"
#include "planner/distance_travel_time_finder.h"
void print_trajectory(const std::vector<std::vector<kinematics::dynamic_joint_state>> traj)
{
for (int i = 0; i < traj.size(); i++)
{
std::cout << i << " : ";
for (const auto &joint : traj[i])
{
std::cout << joint.get_value() << ", ";
}
std::cout << std::endl;
}
std::cout << "-------------------------------------------------" << std::endl;
}
int main()
{
kinematics::kinematic_chain_factory chain_factory;
auto chain = chain_factory.create();
auto fk_solver = kinematics::forward_kinematics_solver();
auto col_checker = kinematics::collision_checker();
point p = fk_solver.compute_end_effector_position(chain);
col_checker.check_collisions(chain);
std::cout << "End effector position (x, y, z): " << p.x << ", " << p.y << ", " << p.z << std::endl;
std::cout << "-------------------------------------------------" << std::endl;
chain->set_state(M_PI / 4, -M_PI / 2, -M_PI / 2, -M_PI / 2, 0.06);
p = fk_solver.compute_end_effector_position(chain);
col_checker.check_collisions(chain);
std::cout << "End effector position (x, y, z): " << p.x << ", " << p.y << ", " << p.z << std::endl;
std::cout << "-------------------------------------------------" << std::endl;
chain->set_state(-M_PI / 4, M_PI / 2, -3 * M_PI / 4, M_PI / 4, 0);
p = fk_solver.compute_end_effector_position(chain);
col_checker.check_collisions(chain);
std::cout << "End effector position (x, y, z): " << p.x << ", " << p.y << ", " << p.z << std::endl;
std::cout << "-------------------------------------------------" << std::endl;
chain->set_state(M_PI / 2, M_PI / 4, -M_PI / 6, 0, 0.05);
p = fk_solver.compute_end_effector_position(chain);
col_checker.check_collisions(chain);
std::cout << "End effector position (x, y, z): " << p.x << ", " << p.y << ", " << p.z << std::endl;
std::cout << "-------------------------------------------------" << std::endl;
chain->set_state(-M_PI / 4, 40 * M_PI / 180, 140 * M_PI / 180, 0, 0.05);
p = fk_solver.compute_end_effector_position(chain);
col_checker.check_collisions(chain);
std::cout << "End effector position (x, y, z): " << p.x << ", " << p.y << ", " << p.z << std::endl;
std::cout << "-------------------------------------------------" << std::endl;
const auto time_finder = planner::distance_travel_time_finder();
auto planner = planner::trajectory_planner(time_finder, col_checker, chain);
const double frequency = 150;
std::vector<kinematics::dynamic_joint_state> start = {
kinematics::dynamic_joint_state(0, -M_PI / 2, M_PI / 2, M_PI / 6, 2 * M_PI / 3),
kinematics::dynamic_joint_state(0, -M_PI / 2, M_PI / 2, M_PI / 6, 2 * M_PI / 3),
kinematics::dynamic_joint_state(0, -5 * M_PI / 6, 5 * M_PI / 6, M_PI / 4, M_PI),
kinematics::dynamic_joint_state(0, -5 * M_PI / 6, 5 * M_PI / 6, M_PI / 4, M_PI),
kinematics::dynamic_joint_state(0, 0, 0.05, 0.01, 0.05)};
std::vector<kinematics::dynamic_joint_state> end = {
kinematics::dynamic_joint_state(M_PI / 4, -M_PI / 2, M_PI / 2, M_PI / 6, 2 * M_PI / 3),
kinematics::dynamic_joint_state(-M_PI / 2, -M_PI / 2, M_PI / 2, M_PI / 6, 2 * M_PI / 3),
kinematics::dynamic_joint_state(-M_PI / 2, -5 * M_PI / 6, 5 * M_PI / 6, M_PI / 4, M_PI),
kinematics::dynamic_joint_state(-M_PI / 2, -5 * M_PI / 6, 5 * M_PI / 6, M_PI / 4, M_PI),
kinematics::dynamic_joint_state(0.05, 0, 0.05, 0.01, 0.05)};
print_trajectory(planner.plan(start, end, frequency));
start[0].set_value(M_PI / 4);
end[4].set_value(0.05);
start[1].set_value(-M_PI / 2);
start[2].set_value(-M_PI / 2);
start[3].set_value(-M_PI / 2);
start[4].set_value(0.01);
print_trajectory(planner.plan(start, end, frequency));
start[0].set_value(0);
start[1].set_value(0);
start[2].set_value(0);
start[3].set_value(0);
start[4].set_value(0);
end[0].set_value(-M_PI/4);
end[1].set_value(M_PI/2);
end[2].set_value(-3*M_PI/4);
end[3].set_value(M_PI/4);
end[4].set_value(0);
print_trajectory(planner.plan(start, end, frequency));
start[0].set_value(M_PI/4);
start[1].set_value(-M_PI/18);
start[2].set_value(2*M_PI/9);
start[3].set_value(0);
start[4].set_value(0);
end[0].set_value(M_PI/4);
end[1].set_value(-M_PI/18);
end[2].set_value(5*M_PI/6);
end[3].set_value(0);
end[4].set_value(0);
print_trajectory(planner.plan(start, end, frequency));
start[0].set_value(-M_PI/2);
start[1].set_value(-M_PI/2);
start[2].set_value(5*M_PI/6);
start[3].set_value(M_PI/6);
start[4].set_value(0);
end[0].set_value(-M_PI/2);
end[1].set_value(0);
end[2].set_value(5*M_PI/6);
end[3].set_value(M_PI/6);
end[4].set_value(0.05);
print_trajectory(planner.plan(start, end, frequency));
return 0;
}