-
Notifications
You must be signed in to change notification settings - Fork 9.7k
/
gguf-dump.py
executable file
·117 lines (103 loc) · 4.75 KB
/
gguf-dump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python3
from __future__ import annotations
import argparse
import os
import sys
from pathlib import Path
from typing import Any
import numpy as np
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
from gguf import GGUFReader, GGUFValueType # noqa: E402
def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
if reader.byte_order == 'S':
file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
else:
file_endian = host_endian
return (host_endian, file_endian)
# For more information about what field.parts and field.data represent,
# please see the comments in the modify_gguf.py example.
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
host_endian, file_endian = get_file_host_endian(reader)
print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.')
print(f'\n* Dumping {len(reader.fields)} key/value pair(s)')
for n, field in enumerate(reader.fields.values(), 1):
if not field.types:
pretty_type = 'N/A'
elif field.types[0] == GGUFValueType.ARRAY:
nest_count = len(field.types) - 1
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
else:
pretty_type = str(field.types[-1].name)
print(f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}', end = '')
if len(field.types) == 1:
curr_type = field.types[0]
if curr_type == GGUFValueType.STRING:
print(' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf8')[:60])), end = '')
elif field.types[0] in reader.gguf_scalar_to_np:
print(' = {0}'.format(field.parts[-1][0]), end = '')
print()
if args.no_tensors:
return
print(f'\n* Dumping {len(reader.tensors)} tensor(s)')
for n, tensor in enumerate(reader.tensors, 1):
prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}')
def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
import json
host_endian, file_endian = get_file_host_endian(reader)
metadata: dict[str, Any] = {}
tensors: dict[str, Any] = {}
result = {
"filename": args.model,
"endian": file_endian,
"metadata": metadata,
"tensors": tensors,
}
for idx, field in enumerate(reader.fields.values()):
curr: dict[str, Any] = {
"index": idx,
"type": field.types[0].name if field.types else 'UNKNOWN',
"offset": field.offset,
}
metadata[field.name] = curr
if field.types[:1] == [GGUFValueType.ARRAY]:
curr["array_types"] = [t.name for t in field.types][1:]
if not args.json_array:
continue
itype = field.types[-1]
if itype == GGUFValueType.STRING:
curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
else:
curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
elif field.types[0] == GGUFValueType.STRING:
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
else:
curr["value"] = field.parts[-1].tolist()[0]
if not args.no_tensors:
for idx, tensor in enumerate(reader.tensors):
tensors[tensor.name] = {
"index": idx,
"shape": tensor.shape.tolist(),
"type": tensor.tensor_type.name,
"offset": tensor.field.offset,
}
json.dump(result, sys.stdout)
def main() -> None:
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
parser.add_argument("--json", action="store_true", help="Produce JSON output")
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
if not args.json:
print(f'* Loading: {args.model}')
reader = GGUFReader(args.model, 'r')
if args.json:
dump_metadata_json(reader, args)
else:
dump_metadata(reader, args)
if __name__ == '__main__':
main()