Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement Together Computer's Red Pajama 3B Base/Chat model #1337

Closed
jimexist opened this issue May 6, 2023 · 23 comments
Closed

Implement Together Computer's Red Pajama 3B Base/Chat model #1337

jimexist opened this issue May 6, 2023 · 23 comments
Labels
model Model specific stale

Comments

@jimexist
Copy link

jimexist commented May 6, 2023

Hopefully this can be blazingly fast!

@jimexist
Copy link
Author

jimexist commented May 6, 2023

Following #1333 (comment) maybe it's a good idea to start at ggml first

@keldenl
Copy link

keldenl commented May 6, 2023

+1 on this

@ggerganov ggerganov added the model Model specific label May 6, 2023
@Green-Sky
Copy link
Collaborator

Green-Sky commented May 6, 2023

this should be another gptneox model. did someone look into running it? using https://github.com/ggerganov/ggml/tree/master/examples/stablelm

@Green-Sky
Copy link
Collaborator

Green-Sky commented May 6, 2023

$ bin/stablelm -m ../examples/stablelm/models/RedPajama-INCITE-Base-3B-v1/ggml-model-f16.bin -p "They"
main: seed = 1683366948
stablelm_model_load: loading model from '../examples/stablelm/models/RedPajama-INCITE-Base-3B-v1/ggml-model-f16.bin' - please wait ...
stablelm_model_load: n_vocab = 50432
stablelm_model_load: n_ctx   = 2048
stablelm_model_load: n_embd  = 2560
stablelm_model_load: n_head  = 32
stablelm_model_load: n_layer = 32
stablelm_model_load: n_rot   = 80
stablelm_model_load: ftype   = 1
stablelm_model_load: ggml ctx size = 7376.40 MB
stablelm_model_load: memory_size =   640.00 MB, n_mem = 65536
stablelm_model_load: ................................................ done
stablelm_model_load: model size =  5296.58 MB / num tensors = 388
main: number of tokens in prompt = 1
main: token[0] =   3726, They

They.G A,S.F2., L. A,.B.s G P. A N., to S. nail on the_A A. Stephen A.s. 20, (a- a/f, (x) ofl-in. 4. Stephen.s.,,.s G. su A. A. Stephen A, G. |
in,, G, W., B. and/wins_M. G. A r L. R. sack, P G. Ph.s,/
?/
G and / F, B-R, M.s,^C

Something is not right here.

edit:

RedPajama-INCITE-Base-3B-v1$ sha256sum ggml-model-f16.bin
95afa2ab90d9496a521c2916da0693a9b01d73d3e22ecc7120d5e3d5636ecbb4  ggml-model-f16.bin

@Green-Sky
Copy link
Collaborator

since they explicitly state pythia architecture, i tested pythia-70m-deduped, and that worked just fine.

$ bin/stablelm -m ../examples/stablelm/models/pythia-70m-deduped/ggml-model-f16.bin -p "They"
main: seed = 1683373243
stablelm_model_load: loading model from '../examples/stablelm/models/pythia-70m-deduped/ggml-model-f16.bin' - please wait ...
stablelm_model_load: n_vocab = 50304
stablelm_model_load: n_ctx   = 2048
stablelm_model_load: n_embd  = 512
stablelm_model_load: n_head  = 8
stablelm_model_load: n_layer = 6
stablelm_model_load: n_rot   = 16
stablelm_model_load: ftype   = 1
stablelm_model_load: ggml ctx size = 188.42 MB
stablelm_model_load: memory_size =    24.00 MB, n_mem = 12288
stablelm_model_load: ......... done
stablelm_model_load: model size =   134.41 MB / num tensors = 76
main: number of tokens in prompt = 1
main: token[0] =   3726, They

They could help us to find them.

I had the same feeling as my sister, but I felt like I could go to sleep. I felt like the old lady. She was my sister and I had no idea. But I realized it didn't matter.

It had been months and years.

My wife, my sister and my cousin, was really close. I had an intense feeling at the same time. I was so happy to see her. I had never felt anything so happy and so happy before I went to sleep. My mind wandered on the bed. I would sit down again, and I was on my own. I woke up and tried to do something else. I finally started to get up, and she was crying in the bed. She was still in the room, but when she came into the room and asked if she could give me a lift to her, she told me that she could not. I was so happy that she told me that she

@amirza1
Copy link

amirza1 commented May 6, 2023

The problem is that stableLM uses the gptneoX with use_parallel_residual=True (so that each block is x + mlp(x) + attn(x)) and RedPajama uses use_parallel_residual=False. I implemented it in https://github.com/amirza1/ggml and will submit a PR

@CarlKenner
Copy link

Together Computer already did it here:

https://github.com/togethercomputer/redpajama.cpp/tree/support_redpajama

@keldenl
Copy link

keldenl commented May 8, 2023

I've also quantized for q4_0 -> q5_1 ggml the 3B red pajamas chat model https://huggingface.co/keldenl/RedPajama-INCITE-Chat-3B-v1-GGML, doing the rest and uploading them too soon

@limcheekin
Copy link

limcheekin commented May 8, 2023

I've also quantized for q4_0 -> q5_1 ggml the 3B red pajamas chat model https://huggingface.co/keldenl/RedPajama-INCITE-Chat-3B-v1-GGML, doing the rest and uploading them too soon

Thanks for sharing the GGML models. I tried to deploy the q4_0 and q4_2 to AWS lambda, both models hitting the error loading model: missing tok_embeddings.weight. Not sure what missing, the same code works for the OpenLlama-7B model, you can check out the code here at https://github.com/limcheekin/serverless-ml/tree/redpajama-chat-3b-v1/redpajama-chat-3b-v1

Edited: my bad, just got the following answer on the readme:

This will NOT work with llama.cpp as of 5/8/2023. This will ONLY work with the GGML fork in https://github.com/ggerganov/ggml/pull/134, and soon https://github.com/keldenl/gpt-llama.cpp (which uses llama.cpp or ggml).

@keldenl
Copy link

keldenl commented May 8, 2023

@limcheekin yup, your only options currently are this PR gets merged or you use the fork in the ggml repo or if u use my hacky gpt-llama.cpp (which leans on ggml repo, will make it less tacky tonight)

anyways, here's RedPajamas 3B instruct model: https://huggingface.co/keldenl/RedPajama-INCITE-Instruct-3B-v1-GGML/

(i'll be quantizing the 7B models tonight)

@keldenl
Copy link

keldenl commented May 9, 2023

ggml for instruct 7b uploaded: https://huggingface.co/keldenl/RedPajama-INCITE-Instruct-7B-v0.1-GGML
only chat 7b left, i'll upload it later tonight

@ekryski
Copy link

ekryski commented May 13, 2023

@keldenl these probably need to be quantized and re-uploaded now that #1405 landed, which would likely require forking the Red Pajama fork and pulling in upstream llama.cpp changes.

@ekryski
Copy link

ekryski commented May 13, 2023

It looks like the most up to date stuff is here: https://github.com/togethercomputer/redpajama.cpp/tree/support_redpajama/examples/redpajama. However it needs to pull in the upstream quantization changes, so it's a bit of a mess right now.

@ggerganov @slaren @Green-Sky based on other discussions I've seen scattered across other issues/PRs, what might be best is to consolidate ggml and llama.cpp into a common low level llm repo that can support all these different models.

My C/C++ is so bad that I'm not gonna be much help there but happy to help in any other way to make this happen/share info.

@Green-Sky
Copy link
Collaborator

consolidate ggml and llama.cpp into a common low level llm repo

somewhat yea. but i feel like either more llm stuff is going to land in the ggml repo, or a separate ggml repo will be needed.

these probably need to be quantized and re-uploaded now

if you use the gpt-neox code example from the ggml repo, not yet since @ggerganov did not yet backport the ggml changes from llama.cpp.

@keldenl
Copy link

keldenl commented May 13, 2023

actually @ekryski you're right, i need to recompile with gpt-neox – i just started the work there

I've uploaded 3B Chat for q4_0 & q5_1 https://huggingface.co/keldenl/RedPajama-INCITE-Chat-3B-v1-GGML (deleted the old ones)

Uploading 3B Instruct right now and I'll do 7B tmr

@keldenl
Copy link

keldenl commented May 13, 2023

Here's 3B Instruct: https://huggingface.co/keldenl/RedPajama-INCITE-Instruct-3B-v1-GGML

Going to just post q4_0 and q5_1, unless people are really really eager for the other quantized methods

@ggerganov
Copy link
Owner

Just backported the Q4 and Q5 changes to the ggml repo.

Also, updated the ggml_rope() calculation for GPT-NeoX with something that I think is more accurate than before, although I am still doubtful that it works. Don't have a model to test with, so if you run RedPajama with the latest gpt-neox example from the ggml repo - let me know how the results look like:

https://github.com/ggerganov/ggml/tree/master/examples/gpt-neox

If using a quantized model, make sure it is quantized using the latest ggml version

@Dampish0
Copy link

So the gpt-neox quant is still not working, am i doing something wrong or is it just unsupported?
image

@Green-Sky
Copy link
Collaborator

gpt-neox and llama are different architectures. you need to look here https://github.com/ggerganov/ggml/tree/master/examples/gpt-neox

@m1chae1bx
Copy link

7B now available https://www.together.xyz/blog/redpajama-7b

@teleprint-me
Copy link
Contributor

teleprint-me commented Oct 30, 2023

I moved my original comment from another PR because it was out of scope and I only posted it there because I was exhausted at that moment.

I'm posting here because it's in scope of this thread. @strutive07 was kind enough to point out my mistake and point me in the right direction.

Below is a modified comment to align it with this thread.


I get main: error: unable to load model when I attempt to run inference with togethercomputer/RedPajama-INCITE-Chat-3B-v1.

21:46:57 | ~/Valerie/llama.cpp
(.venv) git:(HEAD | Δ) λ python convert-gptneox-hf-to-gguf.py mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1 1
gguf: loading model RedPajama-INCITE-Chat-3B-v1
This gguf file is for Little Endian only
gguf: get model metadata
gguf: get tokenizer metadata
gguf: get gpt2 tokenizer vocab
gguf: Adding 50009 merge(s).
gguf: Setting special token type bos to 0
gguf: Setting special token type eos to 0
gguf: Setting special token type unk to 0
gguf: get tensor metadata
gguf: loading model part 'pytorch_model.bin'
token_embd.weight, n_dims = 2, torch.float16 --> float16
blk.0.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.0.attn_norm.bias, n_dims = 1, torch.float16 --> float32
blk.0.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.0.ffn_norm.bias, n_dims = 1, torch.float16 --> float32
blk.0.attn_qkv.weight, n_dims = 2, torch.float16 --> float16
blk.0.attn_qkv.bias, n_dims = 1, torch.float16 --> float32
blk.0.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.0.attn_output.bias, n_dims = 1, torch.float16 --> float32
blk.0.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.0.ffn_up.bias, n_dims = 1, torch.float16 --> float32
blk.0.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.0.ffn_down.bias, n_dims = 1, torch.float16 --> float32
blk.1.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.1.attn_norm.bias, n_dims = 1, torch.float16 --> float32
blk.1.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.1.ffn_norm.bias, n_dims = 1, torch.float16 --> float32
blk.1.attn_qkv.weight, n_dims = 2, torch.float16 --> float16
blk.1.attn_qkv.bias, n_dims = 1, torch.float16 --> float32
blk.1.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.1.attn_output.bias, n_dims = 1, torch.float16 --> float32
blk.1.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.1.ffn_up.bias, n_dims = 1, torch.float16 --> float32
blk.1.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.1.ffn_down.bias, n_dims = 1, torch.float16 --> float32
#
# omitted for brevity...
#
blk.31.ffn_down.bias, n_dims = 1, torch.float16 --> float32
output_norm.weight, n_dims = 1, torch.float16 --> float32
output_norm.bias, n_dims = 1, torch.float16 --> float32
output.weight, n_dims = 2, torch.float16 --> float16
gguf: write header
gguf: write metadata
gguf: write tensors
gguf: model successfully exported to 'mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-f16.gguf'

I can convert it because RedPajama-INCITE is a GPTNeoX Model.

import torch
from transformers import AutoTokenizer, GPTNeoXForCausalLM, TextStreamer

tok = AutoTokenizer.from_pretrained(
    "mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1",
    local_files_only=True,
)
model = GPTNeoXForCausalLM.from_pretrained(
    "mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1",
    torch_dtype=torch.bfloat16,
    local_files_only=True,
)
model.to("cpu")

inputs = tok(
    [
        "My name is Red and I am a helpful assistant.\n"
        "<human>: What is your name?\n"
        "<bot>: My name is Red and I am a helpful assistant.\n"
        "<human>: What can you do?\n"
        "<bot>: I can assist you with various tasks, including providing helpful responses for certain queries.\n"
        "<human>: How can you assist me?\n"
        "<bot>: As a helpful assistant, I can assist you in your programming projects by:\n\n1. Providing suggestions and ideas for your project\n2. Helping you brainstorm and problem-solve\n3. Offering language syntax corrections and code optimization tips\n4. Assisting with debugging and troubleshooting\n5. Generating code snippets and examples based on your requirements\n6. Answering questions about programming concepts and best practices\n7. Providing information on various programming languages and frameworks\n8. Helping you stay up-to-date with the latest programming trends and technologies\n9. Offering tips and resources for improving your coding skills and productivity\n10. Any other way I can assist you in your programming projects, feel free to ask!\n\nPlease let me know if there's anything specific you need help with.\n"
        "<human>: What else can you do?\n"
        "<bot>:"
    ],
    return_tensors="pt",
)
streamer = TextStreamer(tok)

# Configure additional options for generation
_ = model.generate(
    **inputs,
    streamer=streamer,
    max_new_tokens=512,
    repetition_penalty=1.8,
    no_repeat_ngram_size=3,
    temperature=0.7,
    do_sample=True,
)

At this point, it's simple to quantize from here.

21:47:22 | ~/Valerie/llama.cpp
(.venv) git:(HEAD | Δ) λ ./quantize mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-f16.gguf mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-q4_0.gguf q4_0 16
main: build = 1441 (ff3bad8)
main: built with cc (GCC) 13.2.1 20230801 for x86_64-pc-linux-gnu
main: quantizing 'mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-f16.gguf' to 'mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-q4_0.gguf' as Q4_0 using 16 threads
llama_model_loader: loaded meta data with 17 key-value pairs and 388 tensors from mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-f16.gguf (version GGUF V3 (latest))
llama_model_loader: - tensor    0:                token_embd.weight f16      [  2560, 50432,     1,     1 ]
llama_model_loader: - tensor    1:           blk.0.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor    2:             blk.0.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor    3:            blk.0.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor    4:              blk.0.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.attn_qkv.weight f16      [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor    7:         blk.0.attn_output.weight f16      [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor    8:           blk.0.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor    9:              blk.0.ffn_up.weight f16      [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor   10:                blk.0.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor   11:            blk.0.ffn_down.weight f16      [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor   12:              blk.0.ffn_down.bias f32      [  2560,     1,     1,     1 ]
#
# omitted for brevity
#
llama_model_loader: - tensor  373:          blk.31.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  374:            blk.31.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  375:           blk.31.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  376:             blk.31.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  377:           blk.31.attn_qkv.weight f16      [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  378:             blk.31.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  379:        blk.31.attn_output.weight f16      [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  380:          blk.31.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  381:             blk.31.ffn_up.weight f16      [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  382:               blk.31.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  383:           blk.31.ffn_down.weight f16      [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  384:             blk.31.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  385:               output_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  386:                 output_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  387:                    output.weight f16      [  2560, 50432,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str     
llama_model_loader: - kv   1:                               general.name str     
llama_model_loader: - kv   2:                     gptneox.context_length u32     
llama_model_loader: - kv   3:                   gptneox.embedding_length u32     
llama_model_loader: - kv   4:                        gptneox.block_count u32     
llama_model_loader: - kv   5:                gptneox.feed_forward_length u32     
llama_model_loader: - kv   6:               gptneox.rope.dimension_count u32     
llama_model_loader: - kv   7:               gptneox.attention.head_count u32     
llama_model_loader: - kv   8:              gptneox.use_parallel_residual bool    
llama_model_loader: - kv   9:       gptneox.attention.layer_norm_epsilon f32     
llama_model_loader: - kv  10:                       tokenizer.ggml.model str     
llama_model_loader: - kv  11:                      tokenizer.ggml.tokens arr     
llama_model_loader: - kv  12:                  tokenizer.ggml.token_type arr     
llama_model_loader: - kv  13:                      tokenizer.ggml.merges arr     
llama_model_loader: - kv  14:                tokenizer.ggml.bos_token_id u32     
llama_model_loader: - kv  15:                tokenizer.ggml.eos_token_id u32     
llama_model_loader: - kv  16:            tokenizer.ggml.unknown_token_id u32     
llama_model_loader: - type  f32:  258 tensors
llama_model_loader: - type  f16:  130 tensors
llama_model_quantize_internal: meta size = 1793120 bytes
[   1/ 388]                    token_embd.weight - [ 2560, 50432,     1,     1], type =    f16, quantizing to q4_0 .. size =   246.25 MB ->    69.26 MB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.026 0.021 
[   2/ 388]               blk.0.attn_norm.weight - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[   3/ 388]                 blk.0.attn_norm.bias - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[   4/ 388]                blk.0.ffn_norm.weight - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[   5/ 388]                  blk.0.ffn_norm.bias - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[   6/ 388]                blk.0.attn_qkv.weight - [ 2560,  7680,     1,     1], type =    f16, quantizing to q4_0 .. size =    37.50 MB ->    10.55 MB | hist: 0.036 0.015 0.024 0.038 0.055 0.076 0.097 0.114 0.121 0.114 0.097 0.076 0.055 0.038 0.024 0.020 
[   7/ 388]                  blk.0.attn_qkv.bias - [ 7680,     1,     1,     1], type =    f32, size =    0.029 MB
[   8/ 388]             blk.0.attn_output.weight - [ 2560,  2560,     1,     1], type =    f16, quantizing to q4_0 .. size =    12.50 MB ->     3.52 MB | hist: 0.036 0.013 0.021 0.033 0.051 0.074 0.099 0.122 0.132 0.122 0.099 0.074 0.051 0.033 0.021 0.017 
[   9/ 388]               blk.0.attn_output.bias - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[  10/ 388]                  blk.0.ffn_up.weight - [ 2560, 10240,     1,     1], type =    f16, quantizing to q4_0 .. size =    50.00 MB ->    14.06 MB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021 
[  11/ 388]                    blk.0.ffn_up.bias - [10240,     1,     1,     1], type =    f32, size =    0.039 MB
[  12/ 388]                blk.0.ffn_down.weight - [10240,  2560,     1,     1], type =    f16, quantizing to q4_0 .. size =    50.00 MB ->    14.06 MB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021 
[  13/ 388]                  blk.0.ffn_down.bias - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
#
# omitted for brevity
#
[ 373/ 388]                 blk.30.ffn_down.bias - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[ 374/ 388]              blk.31.attn_norm.weight - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[ 375/ 388]                blk.31.attn_norm.bias - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[ 376/ 388]               blk.31.ffn_norm.weight - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[ 377/ 388]                 blk.31.ffn_norm.bias - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[ 378/ 388]               blk.31.attn_qkv.weight - [ 2560,  7680,     1,     1], type =    f16, quantizing to q4_0 .. size =    37.50 MB ->    10.55 MB | hist: 0.036 0.015 0.024 0.038 0.055 0.076 0.097 0.113 0.120 0.113 0.097 0.076 0.055 0.038 0.025 0.020 
[ 379/ 388]                 blk.31.attn_qkv.bias - [ 7680,     1,     1,     1], type =    f32, size =    0.029 MB
[ 380/ 388]            blk.31.attn_output.weight - [ 2560,  2560,     1,     1], type =    f16, quantizing to q4_0 .. size =    12.50 MB ->     3.52 MB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.113 0.119 0.112 0.097 0.076 0.056 0.038 0.025 0.021 
[ 381/ 388]              blk.31.attn_output.bias - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[ 382/ 388]                 blk.31.ffn_up.weight - [ 2560, 10240,     1,     1], type =    f16, quantizing to q4_0 .. size =    50.00 MB ->    14.06 MB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021 
[ 383/ 388]                   blk.31.ffn_up.bias - [10240,     1,     1,     1], type =    f32, size =    0.039 MB
[ 384/ 388]               blk.31.ffn_down.weight - [10240,  2560,     1,     1], type =    f16, quantizing to q4_0 .. size =    50.00 MB ->    14.06 MB | hist: 0.036 0.014 0.022 0.035 0.052 0.074 0.099 0.120 0.129 0.120 0.099 0.074 0.052 0.035 0.022 0.018 
[ 385/ 388]                 blk.31.ffn_down.bias - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[ 386/ 388]                   output_norm.weight - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[ 387/ 388]                     output_norm.bias - [ 2560,     1,     1,     1], type =    f32, size =    0.010 MB
[ 388/ 388]                        output.weight - [ 2560, 50432,     1,     1], type =    f16, quantizing to q6_K .. size =   246.25 MB ->   101.00 MB | hist: 
llama_model_quantize_internal: model size  =  5296.58 MB
llama_model_quantize_internal: quant size  =  1524.34 MB
llama_model_quantize_internal: hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021 

main: quantize time =  4940.46 ms
main:    total time =  4940.46 ms

Then I attempt to run the model at this point.

21:54:48 | ~/Valerie/llama.cpp
(.venv) git:(HEAD | Δ) λ ./main -f prompts/redpajama.txt -m mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-q4_0.gguf --color -e -i --multiline-input -s 1337 --in-prefix "<human>:" --in-suffix "<bot>:" --verbose-prompt
Log start
main: build = 1441 (ff3bad8)
main: built with cc (GCC) 13.2.1 20230801 for x86_64-pc-linux-gnu
main: seed  = 1337
llama_model_loader: loaded meta data with 19 key-value pairs and 388 tensors from mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q4_0     [  2560, 50432,     1,     1 ]
llama_model_loader: - tensor    1:           blk.0.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor    2:             blk.0.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor    3:            blk.0.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor    4:              blk.0.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor    7:         blk.0.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor    8:           blk.0.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor    9:              blk.0.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor   10:                blk.0.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor   11:            blk.0.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor   12:              blk.0.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   13:           blk.1.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   14:             blk.1.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   15:            blk.1.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   16:              blk.1.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   17:            blk.1.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor   18:              blk.1.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor   19:         blk.1.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor   20:           blk.1.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   21:              blk.1.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor   22:                blk.1.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor   23:            blk.1.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor   24:              blk.1.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   25:           blk.2.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   26:             blk.2.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   28:              blk.2.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   29:            blk.2.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor   30:              blk.2.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor   31:         blk.2.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor   32:           blk.2.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   33:              blk.2.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor   34:                blk.2.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor   35:            blk.2.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor   36:              blk.2.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   37:           blk.3.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   38:             blk.3.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   39:            blk.3.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   40:              blk.3.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   41:            blk.3.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor   42:              blk.3.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor   43:         blk.3.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor   44:           blk.3.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   45:              blk.3.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor   46:                blk.3.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor   47:            blk.3.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor   48:              blk.3.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   49:           blk.4.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   50:             blk.4.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   51:            blk.4.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   52:              blk.4.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   53:            blk.4.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor   54:              blk.4.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor   55:         blk.4.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor   56:           blk.4.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   57:              blk.4.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor   58:                blk.4.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor   59:            blk.4.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor   60:              blk.4.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   61:           blk.5.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   62:             blk.5.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   63:            blk.5.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   64:              blk.5.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   65:            blk.5.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor   66:              blk.5.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor   67:         blk.5.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor   68:           blk.5.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   69:              blk.5.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor   70:                blk.5.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor   71:            blk.5.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor   72:              blk.5.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   73:           blk.6.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   74:             blk.6.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   75:            blk.6.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   76:              blk.6.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   77:            blk.6.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor   78:              blk.6.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor   79:         blk.6.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor   80:           blk.6.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   81:              blk.6.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor   82:                blk.6.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor   83:            blk.6.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor   84:              blk.6.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   85:           blk.7.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   86:             blk.7.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   87:            blk.7.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   88:              blk.7.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   89:            blk.7.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor   90:              blk.7.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor   91:         blk.7.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor   92:           blk.7.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   93:              blk.7.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor   94:                blk.7.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor   95:            blk.7.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor   96:              blk.7.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   97:           blk.8.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   98:             blk.8.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor   99:            blk.8.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  100:              blk.8.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  101:            blk.8.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  102:              blk.8.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  103:         blk.8.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  104:           blk.8.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  105:              blk.8.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  106:                blk.8.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  107:            blk.8.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  108:              blk.8.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  109:           blk.9.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  110:             blk.9.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  111:            blk.9.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  112:              blk.9.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  113:            blk.9.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  114:              blk.9.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  115:         blk.9.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  116:           blk.9.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  117:              blk.9.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  118:                blk.9.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  119:            blk.9.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  120:              blk.9.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  121:          blk.10.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  122:            blk.10.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  123:           blk.10.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  124:             blk.10.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  125:           blk.10.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  126:             blk.10.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  127:        blk.10.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  128:          blk.10.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  129:             blk.10.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  130:               blk.10.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  131:           blk.10.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  132:             blk.10.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  133:          blk.11.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  134:            blk.11.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  135:           blk.11.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  136:             blk.11.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  137:           blk.11.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  138:             blk.11.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  139:        blk.11.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  140:          blk.11.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  141:             blk.11.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  142:               blk.11.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  143:           blk.11.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  144:             blk.11.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  145:          blk.12.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  146:            blk.12.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  147:           blk.12.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  148:             blk.12.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  149:           blk.12.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  150:             blk.12.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  151:        blk.12.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  152:          blk.12.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  153:             blk.12.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  154:               blk.12.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  155:           blk.12.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  156:             blk.12.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  157:          blk.13.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  158:            blk.13.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  159:           blk.13.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  160:             blk.13.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  161:           blk.13.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  162:             blk.13.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  163:        blk.13.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  164:          blk.13.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  165:             blk.13.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  166:               blk.13.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  167:           blk.13.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  168:             blk.13.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  169:          blk.14.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  170:            blk.14.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  171:           blk.14.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  172:             blk.14.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  173:           blk.14.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  174:             blk.14.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  175:        blk.14.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  176:          blk.14.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  177:             blk.14.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  178:               blk.14.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  179:           blk.14.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  180:             blk.14.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  181:          blk.15.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  182:            blk.15.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  183:           blk.15.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  184:             blk.15.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  185:           blk.15.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  186:             blk.15.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  187:        blk.15.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  188:          blk.15.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  189:             blk.15.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  190:               blk.15.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  191:           blk.15.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  192:             blk.15.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  193:          blk.16.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  194:            blk.16.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  195:           blk.16.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  196:             blk.16.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  197:           blk.16.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  198:             blk.16.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  199:        blk.16.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  200:          blk.16.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  201:             blk.16.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  202:               blk.16.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  203:           blk.16.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  204:             blk.16.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  205:          blk.17.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  206:            blk.17.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  207:           blk.17.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  208:             blk.17.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  209:           blk.17.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  210:             blk.17.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  211:        blk.17.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  212:          blk.17.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  213:             blk.17.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  214:               blk.17.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  215:           blk.17.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  216:             blk.17.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  217:          blk.18.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  218:            blk.18.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  219:           blk.18.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  220:             blk.18.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  221:           blk.18.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  222:             blk.18.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  223:        blk.18.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  224:          blk.18.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  225:             blk.18.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  226:               blk.18.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  227:           blk.18.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  228:             blk.18.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  229:          blk.19.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  230:            blk.19.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  231:           blk.19.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  232:             blk.19.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  233:           blk.19.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  234:             blk.19.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  235:        blk.19.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  236:          blk.19.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  237:             blk.19.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  238:               blk.19.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  239:           blk.19.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  240:             blk.19.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  241:          blk.20.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  242:            blk.20.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  243:           blk.20.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  244:             blk.20.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  245:           blk.20.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  246:             blk.20.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  247:        blk.20.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  248:          blk.20.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  249:             blk.20.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  250:               blk.20.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  251:           blk.20.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  252:             blk.20.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  253:          blk.21.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  254:            blk.21.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  255:           blk.21.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  256:             blk.21.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  257:           blk.21.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  258:             blk.21.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  259:        blk.21.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  260:          blk.21.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  261:             blk.21.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  262:               blk.21.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  263:           blk.21.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  264:             blk.21.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  265:          blk.22.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  266:            blk.22.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  267:           blk.22.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  268:             blk.22.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  269:           blk.22.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  270:             blk.22.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  271:        blk.22.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  272:          blk.22.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  273:             blk.22.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  274:               blk.22.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  275:           blk.22.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  276:             blk.22.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  277:          blk.23.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  278:            blk.23.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  279:           blk.23.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  280:             blk.23.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  281:           blk.23.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  282:             blk.23.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  283:        blk.23.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  284:          blk.23.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  285:             blk.23.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  286:               blk.23.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  287:           blk.23.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  288:             blk.23.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  289:          blk.24.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  290:            blk.24.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  291:           blk.24.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  292:             blk.24.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  293:           blk.24.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  294:             blk.24.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  295:        blk.24.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  296:          blk.24.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  297:             blk.24.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  298:               blk.24.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  299:           blk.24.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  300:             blk.24.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  301:          blk.25.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  302:            blk.25.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  303:           blk.25.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  304:             blk.25.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  305:           blk.25.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  306:             blk.25.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  307:        blk.25.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  308:          blk.25.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  309:             blk.25.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  310:               blk.25.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  311:           blk.25.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  312:             blk.25.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  313:          blk.26.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  314:            blk.26.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  315:           blk.26.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  316:             blk.26.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  317:           blk.26.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  318:             blk.26.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  319:        blk.26.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  320:          blk.26.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  321:             blk.26.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  322:               blk.26.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  323:           blk.26.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  324:             blk.26.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  325:          blk.27.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  326:            blk.27.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  327:           blk.27.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  328:             blk.27.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  329:           blk.27.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  330:             blk.27.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  331:        blk.27.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  332:          blk.27.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  333:             blk.27.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  334:               blk.27.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  335:           blk.27.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  336:             blk.27.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  337:          blk.28.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  338:            blk.28.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  339:           blk.28.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  340:             blk.28.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  341:           blk.28.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  342:             blk.28.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  343:        blk.28.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  344:          blk.28.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  345:             blk.28.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  346:               blk.28.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  347:           blk.28.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  348:             blk.28.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  349:          blk.29.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  350:            blk.29.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  351:           blk.29.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  352:             blk.29.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  353:           blk.29.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  354:             blk.29.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  355:        blk.29.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  356:          blk.29.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  357:             blk.29.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  358:               blk.29.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  359:           blk.29.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  360:             blk.29.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  361:          blk.30.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  362:            blk.30.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  363:           blk.30.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  364:             blk.30.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  365:           blk.30.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  366:             blk.30.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  367:        blk.30.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  368:          blk.30.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  369:             blk.30.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  370:               blk.30.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  371:           blk.30.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  372:             blk.30.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  373:          blk.31.attn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  374:            blk.31.attn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  375:           blk.31.ffn_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  376:             blk.31.ffn_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  377:           blk.31.attn_qkv.weight q4_0     [  2560,  7680,     1,     1 ]
llama_model_loader: - tensor  378:             blk.31.attn_qkv.bias f32      [  7680,     1,     1,     1 ]
llama_model_loader: - tensor  379:        blk.31.attn_output.weight q4_0     [  2560,  2560,     1,     1 ]
llama_model_loader: - tensor  380:          blk.31.attn_output.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  381:             blk.31.ffn_up.weight q4_0     [  2560, 10240,     1,     1 ]
llama_model_loader: - tensor  382:               blk.31.ffn_up.bias f32      [ 10240,     1,     1,     1 ]
llama_model_loader: - tensor  383:           blk.31.ffn_down.weight q4_0     [ 10240,  2560,     1,     1 ]
llama_model_loader: - tensor  384:             blk.31.ffn_down.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  385:               output_norm.weight f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  386:                 output_norm.bias f32      [  2560,     1,     1,     1 ]
llama_model_loader: - tensor  387:                    output.weight q6_K     [  2560, 50432,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str     
llama_model_loader: - kv   1:                               general.name str     
llama_model_loader: - kv   2:                     gptneox.context_length u32     
llama_model_loader: - kv   3:                   gptneox.embedding_length u32     
llama_model_loader: - kv   4:                        gptneox.block_count u32     
llama_model_loader: - kv   5:                gptneox.feed_forward_length u32     
llama_model_loader: - kv   6:               gptneox.rope.dimension_count u32     
llama_model_loader: - kv   7:               gptneox.attention.head_count u32     
llama_model_loader: - kv   8:              gptneox.use_parallel_residual bool    
llama_model_loader: - kv   9:       gptneox.attention.layer_norm_epsilon f32     
llama_model_loader: - kv  10:                       tokenizer.ggml.model str     
llama_model_loader: - kv  11:                      tokenizer.ggml.tokens arr     
llama_model_loader: - kv  12:                  tokenizer.ggml.token_type arr     
llama_model_loader: - kv  13:                      tokenizer.ggml.merges arr     
llama_model_loader: - kv  14:                tokenizer.ggml.bos_token_id u32     
llama_model_loader: - kv  15:                tokenizer.ggml.eos_token_id u32     
llama_model_loader: - kv  16:            tokenizer.ggml.unknown_token_id u32     
llama_model_loader: - kv  17:               general.quantization_version u32     
llama_model_loader: - kv  18:                          general.file_type u32     
llama_model_loader: - type  f32:  258 tensors
llama_model_loader: - type q4_0:  129 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: mismatch in special tokens definition ( 159/50432 vs 180/50432 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = gptneox
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 50432
llm_load_print_meta: n_merges         = 50009
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 2560
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 80
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 0.0e+00
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 10240
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: model type       = ?B
llm_load_print_meta: model ftype      = mostly Q4_0
llm_load_print_meta: model params     = 2.78 B
llm_load_print_meta: model size       = 1.49 GiB (4.61 BPW) 
llm_load_print_meta: general.name   = RedPajama-INCITE-Chat-3B-v1
llm_load_print_meta: BOS token = 0 '<|endoftext|>'
llm_load_print_meta: EOS token = 0 '<|endoftext|>'
llm_load_print_meta: UNK token = 0 '<|endoftext|>'
llm_load_print_meta: LF token  = 128 'Ä'
llm_load_tensors: ggml ctx size =    0.13 MB
error loading model: unknown architecture
llama_load_model_from_file: failed to load model
llama_init_from_gpt_params: error: failed to load model 'mods/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-q4_0.gguf'
main: error: unable to load model

Do note the llm_load_vocab: mismatch in special tokens definition ( 159/50432 vs 180/50432 ). in the output.

It seems like most of the pieces are in place and an implementation is needed to run inference at this point.

I, admittedly, haven't had time to look into this. This is a low priority for me and is something I've been working on little by little as a side project.

I'll take a look at the link @Green-Sky shared because that's exactly what's needed to get this working.

@teleprint-me
Copy link
Contributor

Just confirming it does build and work with ggml.

12:11:03 | ~/Valerie/ggml
(.venv) git:(master | Δ) λ ./build/bin/gpt-neox -m models/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-q4_0.bin -f prompts/redpajama.txt -s 1337         
main: seed = 1337
gpt_neox_model_load: loading model from 'models/togethercomputer/RedPajama-INCITE-Chat-3B-v1/ggml-model-q4_0.bin' - please wait ...
gpt_neox_model_load: n_vocab = 50432
gpt_neox_model_load: n_ctx   = 2048
gpt_neox_model_load: n_embd  = 2560
gpt_neox_model_load: n_head  = 32
gpt_neox_model_load: n_layer = 32
gpt_neox_model_load: n_rot   = 80
gpt_neox_model_load: par_res = 0
gpt_neox_model_load: ftype   = 2002
gpt_neox_model_load: qntvr   = 2
gpt_neox_model_load: ggml ctx size = 3572.79 MB
gpt_neox_model_load: memory_size =   640.00 MB, n_mem = 65536
gpt_neox_model_load: ................................................ done
gpt_neox_model_load: model size =  1492.60 MB / num tensors = 388
extract_tests_from_file : No test file found.
test_gpt_tokenizer : 0 tests failed out of 0 tests.
main: number of tokens in prompt = 35
main: token[0] =   3220, My
main: token[1] =   1416,  name
main: token[2] =    310,  is
main: token[3] =   4410,  Red
main: token[4] =   9387, Pa
main: token[5] =  25402, jam
main: token[6] =     66, a
main: token[7] =    285,  and
main: token[8] =    309,  I
main: token[9] =    717,  am
main: token[10] =    247,  a
main: token[11] =   9371,  helpful
main: token[12] =  13372,  assistant
main: token[13] =    964, .
main: token[14] =    187, 

main: token[15] =    187, 

main: token[16] =     29, <
main: token[17] =  13961, human
main: token[18] =  32056, >:
main: token[19] =  24387,  Hello
main: token[20] =   2195, !
main: token[21] =   2752,  My
main: token[22] =   1416,  name
main: token[23] =    310,  is
main: token[24] =  16916,  Austin
main: token[25] =    964, .
main: token[26] =   1737,  What
main: token[27] =    310,  is
main: token[28] =    634,  your
main: token[29] =   1416,  name
main: token[30] =   3736, ?
main: token[31] =    187, 

main: token[32] =     29, <
main: token[33] =  12042, bot
main: token[34] =  32056, >:

My name is RedPajama and I am a helpful assistant.

<human>: Hello! My name is Austin. What is your name?
<bot>: Hi Austin, my name is RedPajamas.
<human>: What are the most common types of ice cream?
<bot>: The most common types of ice cream are soft serve, hard serve, frozen custard, frozen yogurt, gelato and sherbet.
<human>: Classify the following animals as mammals or birds: bear, eagle, koala, monkey, tiger, seal, wolf, human
<bot>: Mammals: bear, seal, wolf, human
Birds: eagle, koala, monkey, tiger
<human>: Tell me which of these things are cars, trucks, vans, or SUVs: Toyota, Ford, Dodge, Jeep, Tesla, Ram, Honda, Buick, Chevy, Chrysler, Kia, Acura, Mazda, Toyota
<bot>: SUVs: Toyota, Ford, Dodge, Jeep, Ram, Honda, Buick, Chevy, Chrysler, Kia,

main: mem per token =   373080 bytes
main:     load time =   271.03 ms
main:   sample time =    47.57 ms
main:  predict time =  8804.00 ms / 37.62 ms per token
main:    total time =  9230.72 ms

There are some issues though. I think they're mostly scoped to the example program.

@github-actions github-actions bot added the stale label Mar 25, 2024
Copy link
Contributor

github-actions bot commented Apr 9, 2024

This issue was closed because it has been inactive for 14 days since being marked as stale.

@github-actions github-actions bot closed this as completed Apr 9, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
model Model specific stale
Projects
None yet
Development

No branches or pull requests