diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index e3c8aac3d32aa..fa7ea609a97c7 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -48,7 +48,7 @@ class Model: dir_model: Path ftype: gguf.LlamaFileType - fname_out: Path | None + fname_out: Path is_big_endian: bool endianess: gguf.GGUFEndian use_temp_file: bool @@ -62,11 +62,12 @@ class Model: gguf_writer: gguf.GGUFWriter model_name: str | None metadata_override: Path | None + dir_model_card: Path # subclasses should define this! model_arch: gguf.MODEL_ARCH - def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path | None, is_big_endian: bool = False, + def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False, use_temp_file: bool = False, eager: bool = False, metadata_override: Path | None = None, model_name: str | None = None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False): @@ -90,6 +91,7 @@ def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path | self.tensor_names = None self.metadata_override = metadata_override self.model_name = model_name + self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type if self.ftype == gguf.LlamaFileType.GUESSED: @@ -345,7 +347,7 @@ def prepare_metadata(self, vocab_only: bool): total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count() - self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model, self.model_name, total_params) + self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params) # Fallback to model directory name if metadata name is still missing if self.metadata.name is None: @@ -359,27 +361,22 @@ def prepare_metadata(self, vocab_only: bool): output_type: str = self.ftype.name.partition("_")[2] # Filename Output - # Note: `not is_dir()` is used because `.is_file()` will not detect - # file template strings as it doesn't actually exist as a file - if self.fname_out is not None and not self.fname_out.is_dir(): - # Output path is a custom defined templated filename - - # Process templated file name with the output ftype, useful with the "auto" ftype - self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type) - else: + if self.fname_out.is_dir(): # Generate default filename based on model specification and available metadata if not vocab_only: fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None) else: fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab") - # Check if preferred output directory path was provided - if self.fname_out is not None and self.fname_out.is_dir(): - # output path is a directory - self.fname_out = self.fname_out / f"{fname_default}.gguf" - else: - # output in the same directory as the model by default - self.fname_out = self.dir_model / f"{fname_default}.gguf" + # Use the default filename + self.fname_out = self.fname_out / f"{fname_default}.gguf" + else: + # Output path is a custom defined templated filename + # Note: `not is_dir()` is used because `.is_file()` will not detect + # file template strings as it doesn't actually exist as a file + + # Process templated file name with the output ftype, useful with the "auto" ftype + self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type) self.set_type() @@ -3624,10 +3621,10 @@ def main() -> None: logger.error("Error: Cannot use temp file when splitting") sys.exit(1) - fname_out = None - if args.outfile is not None: fname_out = args.outfile + else: + fname_out = dir_model logger.info(f"Loading model: {dir_model.name}") @@ -3658,7 +3655,6 @@ def main() -> None: else: logger.info("Exporting model...") model_instance.write() - assert model_instance.fname_out is not None out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out logger.info(f"Model successfully exported to {out_path}") diff --git a/convert_lora_to_gguf.py b/convert_lora_to_gguf.py index 66e8da37cba7c..a88d0d4a978a9 100755 --- a/convert_lora_to_gguf.py +++ b/convert_lora_to_gguf.py @@ -290,7 +290,7 @@ def parse_args() -> argparse.Namespace: fname_out = args.outfile else: # output in the same directory as the model by default - fname_out = dir_lora / 'ggml-lora-{ftype}.gguf' + fname_out = dir_lora if os.path.exists(input_model): # lazy import load_file only if lora is in safetensors format. @@ -304,12 +304,6 @@ def parse_args() -> argparse.Namespace: # load base model logger.info(f"Loading base model: {dir_base_model.name}") hparams = Model.load_hparams(dir_base_model) - - with open(lora_config, "r") as f: - lparams: dict[str, Any] = json.load(f) - - alpha: float = lparams["lora_alpha"] - with torch.inference_mode(): try: model_class = Model.from_model_architecture(hparams["architectures"][0]) @@ -320,12 +314,21 @@ def parse_args() -> argparse.Namespace: class LoraModel(model_class): model_arch = model_class.model_arch + lora_alpha: float + + def __init__(self, *args, dir_lora_model: Path, lora_alpha: float, **kwargs): + + super().__init__(*args, **kwargs) + + self.dir_model_card = dir_lora_model + self.lora_alpha = float(lora_alpha) + def set_type(self): self.gguf_writer.add_type(gguf.GGUFType.ADAPTER) self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora") def set_gguf_parameters(self): - self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, float(alpha)) + self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha) super().set_gguf_parameters() def get_tensors(self) -> Iterator[tuple[str, Tensor]]: @@ -368,6 +371,11 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter yield (dest_name + ".lora_a", lora_a) yield (dest_name + ".lora_b", lora_b) + with open(lora_config, "r") as f: + lparams: dict[str, Any] = json.load(f) + + alpha: float = lparams["lora_alpha"] + model_instance = LoraModel( dir_base_model, ftype, @@ -376,6 +384,8 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter use_temp_file=False, eager=args.no_lazy, dry_run=args.dry_run, + dir_lora_model=dir_lora, + lora_alpha=alpha, ) logger.info("Exporting model...") diff --git a/gguf-py/gguf/metadata.py b/gguf-py/gguf/metadata.py index bac6ebfb3777a..15189f7177500 100644 --- a/gguf-py/gguf/metadata.py +++ b/gguf-py/gguf/metadata.py @@ -54,6 +54,7 @@ def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Pat model_card = Metadata.load_model_card(model_path) hf_params = Metadata.load_hf_parameters(model_path) + # TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter # heuristics metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params) @@ -177,6 +178,12 @@ def get_model_id_components(model_id: Optional[str] = None, total_params: int = org_component = None name_parts: list[str] = model_full_name_component.split('-') + + # Remove empty parts + for i in reversed(range(len(name_parts))): + if len(name_parts[i]) == 0: + del name_parts[i] + name_types: list[ set[Literal["basename", "size_label", "finetune", "version", "type"]] ] = [set() for _ in name_parts] @@ -223,9 +230,19 @@ def get_model_id_components(model_id: Optional[str] = None, total_params: int = name_parts[i] = part # Some easy to recognize finetune names elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE): - name_types[i].add("finetune") - if part.lower() == "lora": - name_parts[i] = "LoRA" + if total_params < 0 and part.lower() == "lora": + # ignore redundant "lora" in the finetune part when the output is a lora adapter + name_types[i].add("type") + else: + name_types[i].add("finetune") + + # Ignore word-based size labels when there is at least a number-based one present + # TODO: should word-based size labels always be removed instead? + if any(c.isdecimal() for n, t in zip(name_parts, name_types) if "size_label" in t for c in n): + for n, t in zip(name_parts, name_types): + if "size_label" in t: + if all(c.isalpha() for c in n): + t.remove("size_label") at_start = True # Find the basename through the annotated name @@ -240,18 +257,18 @@ def get_model_id_components(model_id: Optional[str] = None, total_params: int = # Remove the basename annotation from trailing version for part, t in zip(reversed(name_parts), reversed(name_types)): - if "basename" in t: - if len(t) > 1: - t.remove("basename") + if "basename" in t and len(t) > 1: + t.remove("basename") else: break basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None - size_label = "-".join(s for s, t in zip(name_parts, name_types) if "size_label" in t) or None + # Deduplicate size labels using order-preserving 'dict' ('set' seems to sort the keys) + size_label = "-".join(dict.fromkeys(s for s, t in zip(name_parts, name_types) if "size_label" in t).keys()) or None finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None # TODO: should the basename version always be excluded? - # TODO: should multiple versions be joined together? - version = ([v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t] or [None])[-1] + # NOTE: multiple finetune versions are joined together + version = "-".join(v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t) or None if size_label is None and finetune is None and version is None: # Too ambiguous, output nothing diff --git a/gguf-py/gguf/utility.py b/gguf-py/gguf/utility.py index ef76831b521ee..40d59b75ee04e 100644 --- a/gguf-py/gguf/utility.py +++ b/gguf-py/gguf/utility.py @@ -50,15 +50,15 @@ def naming_convention(model_name: str | None, base_name: str | None, finetune_st # Reference: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#gguf-naming-convention if base_name is not None: - name = base_name.strip().title().replace(' ', '-').replace('/', '-') + name = base_name.strip().replace(' ', '-').replace('/', '-') elif model_name is not None: - name = model_name.strip().title().replace(' ', '-').replace('/', '-') + name = model_name.strip().replace(' ', '-').replace('/', '-') else: name = "ggml-model" parameters = f"-{size_label}" if size_label is not None else "" - finetune = f"-{finetune_string.strip().title().replace(' ', '-')}" if finetune_string is not None else "" + finetune = f"-{finetune_string.strip().replace(' ', '-')}" if finetune_string is not None else "" version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else "" diff --git a/gguf-py/tests/test_metadata.py b/gguf-py/tests/test_metadata.py index 3fac8218883f1..81a2a30ae60f4 100755 --- a/gguf-py/tests/test_metadata.py +++ b/gguf-py/tests/test_metadata.py @@ -54,7 +54,7 @@ def test_get_model_id_components(self): self.assertEqual(gguf.Metadata.get_model_id_components("NousResearch/Meta-Llama-3-8B"), ('Meta-Llama-3-8B', "NousResearch", 'Meta-Llama-3', None, None, '8B')) - # Can't detect all non standard form in a heuristically safe way... best to err in caution and output nothing... + # Non standard naming self.assertEqual(gguf.Metadata.get_model_id_components("Qwen1.5-MoE-A2.7B-Chat"), ('Qwen1.5-MoE-A2.7B-Chat', None, 'Qwen1.5-MoE', 'Chat', None, 'A2.7B')) @@ -71,7 +71,7 @@ def test_get_model_id_components(self): self.assertEqual(gguf.Metadata.get_model_id_components("delphi-suite/stories-llama2-50k", 50 * 10**3), ('stories-llama2-50k', 'delphi-suite', 'stories-llama2', None, None, '50K')) - # None standard and not easy to disambiguate + # Non standard and not easy to disambiguate self.assertEqual(gguf.Metadata.get_model_id_components("DeepSeek-Coder-V2-Lite-Instruct"), ('DeepSeek-Coder-V2-Lite-Instruct', None, 'DeepSeek-Coder-V2-Lite', 'Instruct', None, None)) @@ -123,6 +123,51 @@ def test_get_model_id_components(self): self.assertEqual(gguf.Metadata.get_model_id_components("bigscience/bloom-7b1-petals"), ('bloom-7b1-petals', 'bigscience', 'bloom', 'petals', None, '7.1B')) + # Ignore full-text size labels when there are number-based ones, and deduplicate size labels + self.assertEqual(gguf.Metadata.get_model_id_components("MaziyarPanahi/GreenNode-mini-7B-multilingual-v1olet-Mistral-7B-Instruct-v0.1"), + ('GreenNode-mini-7B-multilingual-v1olet-Mistral-7B-Instruct-v0.1', 'MaziyarPanahi', 'GreenNode-mini', 'multilingual-v1olet-Mistral-Instruct', 'v0.1', '7B')) + + # Instruct in a name without a size label + self.assertEqual(gguf.Metadata.get_model_id_components("mistralai/Mistral-Nemo-Instruct-2407"), + ('Mistral-Nemo-Instruct-2407', 'mistralai', 'Mistral-Nemo', 'Instruct', '2407', None)) + + # Non-obvious splitting relying on 'chat' keyword + self.assertEqual(gguf.Metadata.get_model_id_components("deepseek-ai/DeepSeek-V2-Chat-0628"), + ('DeepSeek-V2-Chat-0628', 'deepseek-ai', 'DeepSeek-V2', 'Chat', '0628', None)) + + # Multiple versions + self.assertEqual(gguf.Metadata.get_model_id_components("OpenGVLab/Mini-InternVL-Chat-2B-V1-5"), + ('Mini-InternVL-Chat-2B-V1-5', 'OpenGVLab', 'Mini-InternVL', 'Chat', 'V1-5', '2B')) + + # TODO: DPO in the name + self.assertEqual(gguf.Metadata.get_model_id_components("jondurbin/bagel-dpo-2.8b-v0.2"), + ('bagel-dpo-2.8b-v0.2', 'jondurbin', 'bagel-dpo', None, 'v0.2', '2.8B')) + + # DPO in name, but can't be used for the finetune to keep 'LLaMA-3' in the basename + self.assertEqual(gguf.Metadata.get_model_id_components("voxmenthe/SFR-Iterative-DPO-LLaMA-3-8B-R-unquantized"), + ('SFR-Iterative-DPO-LLaMA-3-8B-R-unquantized', 'voxmenthe', 'SFR-Iterative-DPO-LLaMA-3', 'R-unquantized', None, '8B')) + + # Too ambiguous + # TODO: should "base" be a 'finetune' or 'size_label'? + # (in this case it should be a size label, but other models use it to signal that they are not finetuned) + self.assertEqual(gguf.Metadata.get_model_id_components("microsoft/Florence-2-base"), + ('Florence-2-base', 'microsoft', None, None, None, None)) + + ## Invalid cases ## + + # Start with a dash and has dashes in rows + self.assertEqual(gguf.Metadata.get_model_id_components("mistralai/-Mistral--Nemo-Base-2407-"), + ('-Mistral--Nemo-Base-2407-', 'mistralai', 'Mistral-Nemo-Base', None, '2407', None)) + + ## LoRA ## + + self.assertEqual(gguf.Metadata.get_model_id_components("Llama-3-Instruct-abliteration-LoRA-8B"), + ('Llama-3-Instruct-abliteration-LoRA-8B', None, 'Llama-3', 'Instruct-abliteration-LoRA', None, '8B')) + + # Negative size --> output is a LoRA adaper --> prune "LoRA" out of the name to avoid redundancy with the suffix + self.assertEqual(gguf.Metadata.get_model_id_components("Llama-3-Instruct-abliteration-LoRA-8B", -1234), + ('Llama-3-Instruct-abliteration-LoRA-8B', None, 'Llama-3', 'Instruct-abliteration', None, '8B')) + def test_apply_metadata_heuristic_from_model_card(self): model_card = { 'tags': ['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl'], @@ -134,7 +179,7 @@ def test_apply_metadata_heuristic_from_model_card(self): } got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card, None, None) expect = gguf.Metadata() - expect.base_models=[{'name': 'Mistral 7B Merge 14 v0', 'organization': 'EmbeddedLLM', 'version': 'v0', 'repo_url': 'https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0'}, {'name': 'Trinity v1', 'organization': 'Janai Hq', 'version': 'v1', 'repo_url': 'https://huggingface.co/janai-hq/trinity-v1'}] + expect.base_models=[{'name': 'Mistral 7B Merge 14 v0', 'organization': 'EmbeddedLLM', 'version': '14-v0', 'repo_url': 'https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0'}, {'name': 'Trinity v1', 'organization': 'Janai Hq', 'version': 'v1', 'repo_url': 'https://huggingface.co/janai-hq/trinity-v1'}] expect.tags=['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl'] expect.languages=['en'] expect.datasets=['teknium/OpenHermes-2.5']