-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
bench.py
225 lines (183 loc) · 6.74 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import subprocess
import re
import csv
import wave
import contextlib
import argparse
# Custom action to handle comma-separated list
class ListAction(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, [int(val) for val in values.split(",")])
parser = argparse.ArgumentParser(description="Benchmark the speech recognition model")
# Define the argument to accept a list
parser.add_argument(
"-t",
"--threads",
dest="threads",
action=ListAction,
default=[4],
help="List of thread counts to benchmark (comma-separated, default: 4)",
)
parser.add_argument(
"-p",
"--processors",
dest="processors",
action=ListAction,
default=[1],
help="List of processor counts to benchmark (comma-separated, default: 1)",
)
parser.add_argument(
"-f",
"--filename",
type=str,
default="./samples/jfk.wav",
help="Relative path of the file to transcribe (default: ./samples/jfk.wav)",
)
# Parse the command line arguments
args = parser.parse_args()
sample_file = args.filename
threads = args.threads
processors = args.processors
# Define the models, threads, and processor counts to benchmark
models = [
"ggml-tiny.en.bin",
"ggml-tiny.bin",
"ggml-base.en.bin",
"ggml-base.bin",
"ggml-small.en.bin",
"ggml-small.bin",
"ggml-medium.en.bin",
"ggml-medium.bin",
"ggml-large-v1.bin",
"ggml-large-v2.bin",
"ggml-large-v3.bin",
"ggml-large-v3-turbo.bin",
]
metal_device = ""
# Initialize a dictionary to hold the results
results = {}
gitHashHeader = "Commit"
modelHeader = "Model"
hardwareHeader = "Hardware"
recordingLengthHeader = "Recording Length (seconds)"
threadHeader = "Thread"
processorCountHeader = "Processor Count"
loadTimeHeader = "Load Time (ms)"
sampleTimeHeader = "Sample Time (ms)"
encodeTimeHeader = "Encode Time (ms)"
decodeTimeHeader = "Decode Time (ms)"
sampleTimePerRunHeader = "Sample Time per Run (ms)"
encodeTimePerRunHeader = "Encode Time per Run (ms)"
decodeTimePerRunHeader = "Decode Time per Run (ms)"
totalTimeHeader = "Total Time (ms)"
def check_file_exists(file: str) -> bool:
return os.path.isfile(file)
def get_git_short_hash() -> str:
try:
return (
subprocess.check_output(["git", "rev-parse", "--short", "HEAD"])
.decode()
.strip()
)
except subprocess.CalledProcessError as e:
return ""
def wav_file_length(file: str = sample_file) -> float:
with contextlib.closing(wave.open(file, "r")) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames / float(rate)
return duration
def extract_metrics(output: str, label: str) -> tuple[float, float]:
match = re.search(rf"{label} \s*=\s*(\d+\.\d+)\s*ms\s*/\s*(\d+)\s*runs", output)
time = float(match.group(1)) if match else None
runs = float(match.group(2)) if match else None
return time, runs
def extract_device(output: str) -> str:
match = re.search(r"picking default device: (.*)", output)
device = match.group(1) if match else "Not found"
return device
# Check if the sample file exists
if not check_file_exists(sample_file):
raise FileNotFoundError(f"Sample file {sample_file} not found")
recording_length = wav_file_length()
# Check that all models exist
# Filter out models from list that are not downloaded
filtered_models = []
for model in models:
if check_file_exists(f"models/{model}"):
filtered_models.append(model)
else:
print(f"Model {model} not found, removing from list")
models = filtered_models
# Loop over each combination of parameters
for model in filtered_models:
for thread in threads:
for processor_count in processors:
# Construct the command to run
cmd = f"./build/bin/whisper-cli -m models/{model} -t {thread} -p {processor_count} -f {sample_file}"
# Run the command and get the output
process = subprocess.Popen(
cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT
)
output = ""
while process.poll() is None:
output += process.stdout.read().decode()
# Parse the output
load_time_match = re.search(r"load time\s*=\s*(\d+\.\d+)\s*ms", output)
load_time = float(load_time_match.group(1)) if load_time_match else None
metal_device = extract_device(output)
sample_time, sample_runs = extract_metrics(output, "sample time")
encode_time, encode_runs = extract_metrics(output, "encode time")
decode_time, decode_runs = extract_metrics(output, "decode time")
total_time_match = re.search(r"total time\s*=\s*(\d+\.\d+)\s*ms", output)
total_time = float(total_time_match.group(1)) if total_time_match else None
model_name = model.replace("ggml-", "").replace(".bin", "")
print(
f"Ran model={model_name} threads={thread} processor_count={processor_count}, took {total_time}ms"
)
# Store the times in the results dictionary
results[(model_name, thread, processor_count)] = {
loadTimeHeader: load_time,
sampleTimeHeader: sample_time,
encodeTimeHeader: encode_time,
decodeTimeHeader: decode_time,
sampleTimePerRunHeader: round(sample_time / sample_runs, 2),
encodeTimePerRunHeader: round(encode_time / encode_runs, 2),
decodeTimePerRunHeader: round(decode_time / decode_runs, 2),
totalTimeHeader: total_time,
}
# Write the results to a CSV file
with open("benchmark_results.csv", "w", newline="") as csvfile:
fieldnames = [
gitHashHeader,
modelHeader,
hardwareHeader,
recordingLengthHeader,
threadHeader,
processorCountHeader,
loadTimeHeader,
sampleTimeHeader,
encodeTimeHeader,
decodeTimeHeader,
sampleTimePerRunHeader,
encodeTimePerRunHeader,
decodeTimePerRunHeader,
totalTimeHeader,
]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
shortHash = get_git_short_hash()
# Sort the results by total time in ascending order
sorted_results = sorted(results.items(), key=lambda x: x[1].get(totalTimeHeader, 0))
for params, times in sorted_results:
row = {
gitHashHeader: shortHash,
modelHeader: params[0],
hardwareHeader: metal_device,
recordingLengthHeader: recording_length,
threadHeader: params[1],
processorCountHeader: params[2],
}
row.update(times)
writer.writerow(row)