forked from larshg/pcl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppf_registration.cpp
102 lines (92 loc) · 4.48 KB
/
ppf_registration.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011, Alexandru-Eugen Ichim
* Willow Garage, Inc
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#include <pcl/registration/ppf_registration.h>
//#ifndef PCL_NO_PRECOMPILE
//#include <pcl/point_types.h>
//#include <pcl/impl/instantiate.hpp>
//#include <pcl/registration/impl/ppf_registration.hpp>
//PCL_INSTANTIATE_PRODUCT(PPFRegistration, (PCL_XYZ_POINT_TYPES)(PCL_NORMAL_POINT_TYPES));
//#endif // PCL_NO_PRECOMPILE
void
pcl::PPFHashMapSearch::setInputFeatureCloud (PointCloud<PPFSignature>::ConstPtr feature_cloud)
{
// Discretize the feature cloud and insert it in the hash map
feature_hash_map_->clear ();
unsigned int n = static_cast<unsigned int> (sqrt (static_cast<float> (feature_cloud->points.size ())));
int d1, d2, d3, d4;
max_dist_ = -1.0;
alpha_m_.resize (n);
for (size_t i = 0; i < n; ++i)
{
std::vector <float> alpha_m_row (n);
for (size_t j = 0; j < n; ++j)
{
d1 = static_cast<int> (floor (feature_cloud->points[i*n+j].f1 / angle_discretization_step_));
d2 = static_cast<int> (floor (feature_cloud->points[i*n+j].f2 / angle_discretization_step_));
d3 = static_cast<int> (floor (feature_cloud->points[i*n+j].f3 / angle_discretization_step_));
d4 = static_cast<int> (floor (feature_cloud->points[i*n+j].f4 / distance_discretization_step_));
feature_hash_map_->insert (std::pair<HashKeyStruct, std::pair<size_t, size_t> > (HashKeyStruct (d1, d2, d3, d4), std::pair<size_t, size_t> (i, j)));
alpha_m_row [j] = feature_cloud->points[i*n + j].alpha_m;
if (max_dist_ < feature_cloud->points[i*n + j].f4)
max_dist_ = feature_cloud->points[i*n + j].f4;
}
alpha_m_[i] = alpha_m_row;
}
internals_initialized_ = true;
}
//////////////////////////////////////////////////////////////////////////////////////////////
void
pcl::PPFHashMapSearch::nearestNeighborSearch (float &f1, float &f2, float &f3, float &f4,
std::vector<std::pair<size_t, size_t> > &indices)
{
if (!internals_initialized_)
{
PCL_ERROR("[pcl::PPFRegistration::nearestNeighborSearch]: input feature cloud has not been set - skipping search!\n");
return;
}
int d1 = static_cast<int> (floor (f1 / angle_discretization_step_)),
d2 = static_cast<int> (floor (f2 / angle_discretization_step_)),
d3 = static_cast<int> (floor (f3 / angle_discretization_step_)),
d4 = static_cast<int> (floor (f4 / distance_discretization_step_));
indices.clear ();
HashKeyStruct key = HashKeyStruct (d1, d2, d3, d4);
std::pair <FeatureHashMapType::iterator, FeatureHashMapType::iterator> map_iterator_pair = feature_hash_map_->equal_range (key);
for (; map_iterator_pair.first != map_iterator_pair.second; ++ map_iterator_pair.first)
indices.push_back (std::pair<size_t, size_t> (map_iterator_pair.first->second.first,
map_iterator_pair.first->second.second));
}