forked from ENSTA-U2IS-AI/MR_perceptual
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_dataset_model.py
74 lines (61 loc) · 4.35 KB
/
test_dataset_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import mrpl
from data import data_loader as dl
import argparse
from IPython import embed
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_mode', type=str, default='2afc', help='[2afc,jnd]')
parser.add_argument('--datasets', type=str, nargs='+', default=['val/traditional','val/cnn','val/superres','val/deblur','val/color','val/frameinterp'], help='datasets to test - for jnd mode: [val/traditional],[val/cnn]; for 2afc mode: [train/traditional],[train/cnn],[train/mix],[val/traditional],[val/cnn],[val/color],[val/deblur],[val/frameinterp],[val/superres]')
parser.add_argument('--model', type=str, default='mrpl', help='distance model type [lpips] for linearly calibrated net, [baseline] for off-the-shelf network, [l2] for euclidean distance, [ssim] for Structured Similarity Image Metric,[mrpl] for Multi Resolution Perceptual Loss')
parser.add_argument('--net', type=str, default='alex', help='[alex] for network architectures')
parser.add_argument('--colorspace', type=str, default='Lab', help='[Lab] or [RGB] for colorspace to use for l2, ssim model types')
parser.add_argument('--batch_size', type=int, default=50, help='batch size to test image patches in')
parser.add_argument('--use_gpu', action='store_true', help='turn on flag to use GPU')
parser.add_argument('--gpu_ids', type=int, nargs='+', default=[0], help='gpus to use')
parser.add_argument('--feature', type=str, nargs='+', default=['linear'], help='Extraction type of the features : [linear,quadratic]')
parser.add_argument('--resolution', type=str, nargs='+', default=['x1'], help='Resolution of the linear features : [x1,x2]')
parser.add_argument('--loss_type', type=str, default='CE', help='[MSE,CE]')
parser.add_argument('--norm', type=str, default='sigmoid', help='[sigmoid]')
parser.add_argument('--mrpl', action='store_true', help='Use the Best Multi Resolution Perceptual Loss presented in the paper')
parser.add_argument('--nThreads', type=int, default=4, help='number of threads to use in data loader')
parser.add_argument('--RBF', action='store_true', help='model was initialized from scratch')
parser.add_argument('--randomRBF', action='store_true', help='model was initialized from scratch')
parser.add_argument('--model_path', type=str, default=None, help='location of model, will default to ./weights/v[version]/[net_name].pth')
parser.add_argument('--from_scratch', action='store_true', help='model was initialized from scratch')
parser.add_argument('--train_trunk', action='store_true', help='model trunk was trained/tuned')
parser.add_argument('--version', type=str, default='0.1', help='v0.1 is latest, v0.0 was original release')
opt = parser.parse_args()
if(opt.RBF ):
opt.gram, opt.model = False, 'baseline'
opt.randomRBF = False
opt.batch_size = 1
if(opt.randomRBF ):
opt.gram, opt.model = False, 'baseline'
opt.RBF = False
if((opt.model in ['l2','ssim','pattern_spectrum'])):
opt.batch_size = 1
# initialize model
trainer = mrpl.Trainer()
trainer.initialize(model=opt.model, net=opt.net, colorspace=opt.colorspace,
model_path=opt.model_path, use_gpu=opt.use_gpu, pnet_rand=opt.from_scratch, pnet_tune=opt.train_trunk,RBF=opt.RBF,randomRBF=opt.randomRBF,
version=opt.version, gpu_ids=opt.gpu_ids,loss_type=opt.loss_type,norm=opt.norm,feature=opt.feature,resolution=opt.resolution,mrpl_model=opt.mrpl)
if(opt.model in ['net-lin','net']):
print('Testing model [%s]-[%s]'%(opt.model,opt.net))
elif(opt.model in ['l2','ssim', 'pattern_spectrum']):
print('Testing model [%s]-[%s]'%(opt.model,opt.colorspace))
# initialize data loader
for dataset in opt.datasets:
if opt.model != 'pattern_spectrum_net':
data_loader = dl.CreateDataLoader(dataset,dataset_mode=opt.dataset_mode, batch_size=opt.batch_size, nThreads=opt.nThreads)
else:
data_loader = dl.CreateDataLoader(dataset,dataset_mode=opt.dataset_mode,morpho=True, batch_size=opt.batch_size, nThreads=opt.nThreads)
# evaluate model on data
if (opt.dataset_mode == '2afc'):
if opt.model != 'pattern_spectrum_net':
(score, results_verbose) = mrpl.score_2afc_dataset(data_loader, trainer.forward, name=dataset)
else:
(score, results_verbose) = mrpl.score_2afc_dataset(data_loader, trainer.forward,morpho=True, name=dataset)
elif(opt.dataset_mode=='jnd'):
(score, results_verbose) = mrpl.score_jnd_dataset(data_loader, trainer.forward, name=dataset)
# print results
print(' Dataset [%s]: score paper %.2f '%(dataset,100.*score))