-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsensor_connection.py
96 lines (79 loc) · 2.85 KB
/
sensor_connection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""
Copyright (c) 2020 Imagimob AB. Distributed under MIT license.
​"""
import time
from typing import List
import numpy as np
class SensorConnection():
"""
Abstract base class that defines a connection to a sensor. All functions
must be overridden by subclass for the CaptureServer to be able to work.
"""
def __init__(self, *args, **kwargs):
raise NotImplementedError
def connect(self) -> None:
"""
Setup the connection to the sensor, e.g. connecting over serial port
and sending configuring commands.
"""
raise NotImplementedError
def read_data(self) -> np.ndarray:
"""
Read the data buffer from the sensor. Should return a n-dimensional
numpy array.
"""
raise NotImplementedError
def disconnect(self) -> None:
"""
Disconnect from the sensor
"""
raise NotImplementedError
def get_json_packet(self) -> List[dict]:
"""
A list of dictionaries data packet (aka json) that describes the data format that
is to be sent to the app. E.g.:
[
{
"type": "int", # or "float"
"count": 3,
"tag": "accelerometer"
}
]
"""
raise NotImplementedError
class RandomNumberSensorConnection(SensorConnection):
"""
Simulates a sensor returning a N-dimensional signal of random values.
Can generate both int or float values depending on the value of type.
"""
def __init__(self, *args, **kwargs):
self._min_value = kwargs.get("min_value", 0)
self._max_value = kwargs.get("max_value", 100)
self._dimensions = kwargs.get("dimensions", 3)
self._sample_time = kwargs.get("sample_time", 1.0 / 10.0)
self._type = kwargs.get("type", "int")
if self._type == "int":
self._random_func = np.random.randint
else:
# Assume float
self._random_func = np.random.uniform
self._connected = False
self._last_sensor_reading = time.time()
def connect(self) -> None:
self._connected = True
print("Random sensor connected.")
def read_data(self) -> np.ndarray:
if not self._connected:
raise RuntimeError("Random sensor not connected.")
elapsed_time = time.time() - self._last_sensor_reading
if elapsed_time > self._sample_time:
sensor_data = self._random_func(self._min_value, self._max_value, size=self._dimensions)
self._last_sensor_reading = time.time()
else:
sensor_data = None
return sensor_data
def disconnect(self):
self._connected = False
print("Random sensor disconnected.")
def get_json_packet(self):
return [{"type": self._type, "count": self._dimensions, "tag": "random"}]