-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_rein.py
153 lines (131 loc) · 6.03 KB
/
train_rein.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import torch
import torch.nn as nn
import argparse
import timm
import numpy as np
import utils
import random
import rein
import time
import dino_variant
from sklearn.metrics import f1_score
def train():
parser = argparse.ArgumentParser()
parser.add_argument('--data', '-d', type=str)
parser.add_argument('--gpu', '-g', default = '0', type=str)
parser.add_argument('--netsize', default='s', type=str)
parser.add_argument('--save_path', '-s', type=str)
parser.add_argument('--noise_rate', '-n', type=float, default=0.2)
args = parser.parse_args()
config = utils.read_conf('conf/'+args.data+'.json')
device = 'cuda:'+args.gpu
save_path = os.path.join(config['save_path'], args.save_path)
data_path = config['id_dataset']
batch_size = int(config['batch_size'])
max_epoch = int(config['epoch'])
noise_rate = args.noise_rate
if not os.path.exists(save_path):
os.mkdir(save_path)
lr_decay = [int(0.5*max_epoch), int(0.75*max_epoch), int(0.9*max_epoch)]
if args.data == 'ham10000':
train_loader, valid_loader = utils.get_noise_dataset(data_path, noise_rate=noise_rate, batch_size = batch_size)
elif args.data == 'aptos':
train_loader, valid_loader = utils.get_aptos_noise_dataset(data_path, noise_rate=noise_rate, batch_size = batch_size)
elif args.data == 'nihchest':
train_loader, valid_loader = utils.get_nihxray(data_path, batch_size = batch_size)
elif args.data == 'idrid':
train_loader, valid_loader = utils.get_idrid_noise_dataset(data_path, noise_rate=noise_rate, batch_size = batch_size)
elif args.data == 'chaoyang':
train_loader, valid_loader = utils.get_chaoyang_dataset(data_path, batch_size = batch_size)
elif 'mnist' in args.data:
train_loader, valid_loader = utils.get_mnist_noise_dataset(args.data, noise_rate=noise_rate, batch_size = batch_size)
elif args.data == 'dr':
train_loader, valid_loader = utils.get_dr(data_path, batch_size = batch_size)
elif 'cifar' in args.data:
train_loader, valid_loader = utils.get_cifar_noise_dataset(args.data, data_path, batch_size = batch_size, noise_rate=noise_rate)
elif args.data == 'clothing':
train_loader, valid_loader = utils.get_clothing1m_dataset(data_path, batch_size=batch_size)
lr_decay = [5, 10]
elif args.data == 'webvision':
train_loader, valid_loader = utils.get_webvision(data_path, batch_size=batch_size)
elif args.data == 'animal10n':
train_loader, valid_loader = utils.get_animal10n(data_path, batch_size=batch_size)
if args.netsize == 's':
model_load = dino_variant._small_dino
variant = dino_variant._small_variant
elif args.netsize == 'b':
model_load = dino_variant._base_dino
variant = dino_variant._base_variant
elif args.netsize == 'l':
model_load = dino_variant._large_dino
variant = dino_variant._large_variant
model = torch.hub.load('facebookresearch/dinov2', model_load)
dino_state_dict = model.state_dict()
model = rein.ReinsDinoVisionTransformer(
**variant
)
model.load_state_dict(dino_state_dict, strict=False)
model.linear = nn.Linear(variant['embed_dim'], config['num_classes'])
model.to(device)
print(model)
criterion = torch.nn.CrossEntropyLoss()
model.eval()
if args.data == 'dr':
num_samples = {0: 25810, 1: 2443, 2: 5292, 3: 873, 4: 708}
class_weight = torch.tensor([1-num_samples[x]/sum(num_samples.values()) for x in num_samples]).to(device)
print(class_weight)
criterion = torch.nn.CrossEntropyLoss(weight=class_weight)
# optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum=0.9, weight_decay = 1e-05)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay = 1e-5)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, lr_decay)
saver = timm.utils.CheckpointSaver(model, optimizer, checkpoint_dir= save_path, max_history = 1)
print(train_loader.dataset[0][0].shape)
# f = open(os.path.join(save_path, 'epoch_acc.txt'), 'w')
avg_accuracy = 0.0
for epoch in range(max_epoch):
## training
model.train()
total_loss = 0
total = 0
correct = 0
start_time = time.time()
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
features = model.forward_features(inputs)
features = features[:, 0, :]
outputs = model.linear(features)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
total_loss += loss
total += targets.size(0)
_, predicted = outputs[:len(targets)].max(1)
correct += predicted.eq(targets).sum().item()
print('\r', batch_idx, len(train_loader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (total_loss/(batch_idx+1), 100.*correct/total, correct, total), end = '')
train_accuracy = correct/total
end_time = time.time()
train_avg_loss = total_loss/len(train_loader)
print()
end_time = time.time()
elasped_time = end_time-start_time
print(elasped_time)
print(end_time-start_time)
## validation
model.eval()
total_loss = 0
total = 0
correct = 0
valid_accuracy = utils.validation_accuracy_rein(model, valid_loader, device)
if epoch >= max_epoch-10:
avg_accuracy += valid_accuracy
scheduler.step()
saver.save_checkpoint(epoch, metric = valid_accuracy)
print('EPOCH {:4}, TRAIN [loss - {:.4f}, acc - {:.4f}], VALID [acc - {:.4f}]\n'.format(epoch, train_avg_loss, train_accuracy, valid_accuracy))
print(scheduler.get_last_lr())
with open(os.path.join(save_path, 'avgacc.txt'), 'w') as f:
f.write(str(avg_accuracy/10))
if __name__ =='__main__':
train()