forked from openLRSng/openLRSng
-
Notifications
You must be signed in to change notification settings - Fork 10
/
TX.h
933 lines (826 loc) · 21.7 KB
/
TX.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
/****************************************************
* OpenLRSng transmitter code
****************************************************/
uint32_t mavlink_last_inject_time = 0;
uint16_t rxerrors = 0;
uint8_t RF_channel = 0;
uint8_t altPwrIndex = 0; // every nth packet at lower power
uint8_t altPwrCount = 0;
uint8_t FSstate = 0; // 1 = waiting timer, 2 = send FS, 3 sent waiting btn release
uint32_t FStime = 0; // time when button went down...
uint32_t lastSent = 0;
uint32_t lastTelemetry = 0;
uint8_t RSSI_rx = 0;
uint8_t RSSI_tx = 0;
uint8_t RX_ain0 = 0;
uint8_t RX_ain1 = 0;
uint32_t sampleRSSI = 0;
uint16_t linkQuality = 0;
uint16_t linkQualityRX = 0;
volatile uint8_t ppmAge = 0; // age of PPM data
volatile uint8_t ppmCounter = 255; // ignore data until first sync pulse
uint8_t serialMode = 0; // 0 normal, 1 spektrum 1024 , 2 spektrum 2048, 3 SBUS, 4 SUMD
struct sbus_help {
uint16_t ch0 : 11;
uint16_t ch1 : 11;
uint16_t ch2 : 11;
uint16_t ch3 : 11;
uint16_t ch4 : 11;
uint16_t ch5 : 11;
uint16_t ch6 : 11;
uint16_t ch7 : 11;
} __attribute__ ((__packed__));
struct sbus {
struct sbus_help ch[2];
uint8_t status;
} __attribute__ ((__packed__));
// This is common temporary buffer used by all PPM input methods
union ppm_msg {
uint8_t bytes[32];
uint16_t words[16];
struct sbus sbus;
} ppmWork;
#ifndef BZ_FREQ
#define BZ_FREQ 2000
#endif
#ifdef DEBUG_DUMP_PPM
uint8_t ppmDump = 0;
uint32_t lastDump = 0;
#endif
/****************************************************
* Interrupt Vector
****************************************************/
static inline void processPulse(uint16_t pulse)
{
if (serialMode) {
return;
}
#if (F_CPU == 16000000)
if (!(tx_config.flags & MICROPPM)) {
pulse >>= 1; // divide by 2 to get servo value on normal PPM
}
#elif (F_CPU == 8000000)
if (tx_config.flags & MICROPPM) {
pulse<<= 1; // multiply microppm value by 2
}
#else
#error F_CPU invalid
#endif
if (pulse > 2500) { // Verify if this is the sync pulse (2.5ms)
if ((ppmCounter>(TX_CONFIG_GETMINCH()?TX_CONFIG_GETMINCH():1)) && (ppmCounter!=255)) {
uint8_t i;
for (i=0; i < ppmCounter; i++) {
PPM[i] = ppmWork.words[i];
}
ppmAge = 0; // brand new PPM data received
#ifdef DEBUG_DUMP_PPM
ppmDump = 1;
#endif
}
ppmCounter = 0; // -> restart the channel counter
} else if ((pulse > 700) && (ppmCounter < PPM_CHANNELS)) { // extra channels will get ignored here
ppmWork.words[ppmCounter++] = servoUs2Bits(pulse); // Store measured pulse length (converted)
} else {
ppmCounter = 255; // glitch ignore rest of data
}
}
#ifdef USE_ICP1 // Use ICP1 in input capture mode
volatile uint16_t startPulse = 0;
ISR(TIMER1_CAPT_vect)
{
uint16_t stopPulse = ICR1;
processPulse(stopPulse - startPulse); // as top is 65535 uint16 math will take care of rollover
startPulse = stopPulse; // Save time at pulse start
}
void setupPPMinput()
{
// Setup timer1 for input capture (PSC=8 -> 0.5ms precision)
TCCR1A = ((1 << WGM10) | (1 << WGM11));
TCCR1B = ((1 << WGM12) | (1 << WGM13) | (1 << CS11) | (1 <<ICNC1));
// normally capture on rising edge, allow invertting via SW flag
if (!(tx_config.flags & INVERTED_PPMIN)) {
TCCR1B |= (1 << ICES1);
}
OCR1A = 65535;
TIMSK1 |= (1 << ICIE1); // Enable timer1 input capture interrupt
}
#else // sample PPM using pinchange interrupt
ISR(PPM_Signal_Interrupt)
{
uint16_t pulseWidth;
if ( (tx_config.flags & INVERTED_PPMIN) ^ PPM_Signal_Edge_Check) {
pulseWidth = TCNT1; // read the timer1 value
TCNT1 = 0; // reset the timer1 value for next
processPulse(pulseWidth);
}
}
void setupPPMinput(void)
{
// Setup timer1 for input capture (PSC=8 -> 0.5ms precision)
TCCR1A = ((1 << WGM10) | (1 << WGM11));
TCCR1B = ((1 << WGM12) | (1 << WGM13) | (1 << CS11));
OCR1A = 65535;
TIMSK1 = 0;
PPM_Pin_Interrupt_Setup
}
#endif
void bindMode(void)
{
uint32_t prevsend = millis();
uint8_t tx_buf[sizeof(bind_data) + 1];
bool sendBinds = 1;
init_rfm(1);
Serial.flush();
Red_LED_OFF;
while (1) {
if (sendBinds & (millis() - prevsend > 200)) {
prevsend = millis();
Green_LED_ON;
buzzerOn(BZ_FREQ);
tx_buf[0] = 'b';
memcpy(tx_buf + 1, &bind_data, sizeof(bind_data));
tx_packet(tx_buf, sizeof(bind_data) + 1);
Green_LED_OFF;
buzzerOff();
RF_Mode = Receive;
rx_reset();
delay(50);
if (RF_Mode == Received) {
RF_Mode = Receive;
spiSendAddress(0x7f); // Send the package read command
if ('B' == spiReadData()) {
sendBinds = 0;
}
}
}
if (!digitalRead(BTN)) {
sendBinds = 1;
}
while (Serial.available()) {
Red_LED_ON;
Green_LED_ON;
switch (Serial.read()) {
#ifdef CLI
case '\n':
case '\r':
#ifdef CLI_ENABLED
Serial.println(F("Enter menu..."));
handleCLI();
#else
Serial.println(F("CLI not available, use configurator!"));
#endif
break;
#endif
case '#':
scannerMode();
break;
#ifdef CONFIGURATOR
case 'B':
binaryMode();
break;
#endif
default:
break;
}
Red_LED_OFF;
Green_LED_OFF;
}
}
}
void setupProfile()
{
profileInit();
if (activeProfile==TX_PROFILE_COUNT) {
#if defined(TX_MODE2)
switch ((digitalRead(TX_MODE1)?1:0) | (digitalRead(TX_MODE2)?2:0)) {
case 2:
activeProfile = 0; // MODE1 grounded
break;
case 1:
activeProfile = 1; // MODE2 grounded
break;
case 3:
activeProfile = 2; // both high
break;
case 0:
activeProfile = 3; // both ground
break;
}
#elif defined(TX_MODE1)
activeProfile = digitalRead(TX_MODE1) ? 0 : 1;
#else
activeProfile = 0;
#endif
}
}
void checkButton(void)
{
uint32_t time, loop_time;
if (digitalRead(BTN) == 0) { // Check the button
delay(200); // wait for 200mS with buzzer ON
buzzerOff();
time = millis(); //set the current time
loop_time = time;
while (millis() < time + 4800) {
if (digitalRead(BTN)) {
goto just_bind;
}
}
// Check the button again, If it is still down reinitialize
if (0 == digitalRead(BTN)) {
int8_t bzstate = HIGH;
uint8_t swapProfile = 0;
buzzerOn(bzstate?BZ_FREQ:0);
loop_time = millis();
while (0 == digitalRead(BTN)) { // wait for button to release
if (loop_time > time + 9800) {
buzzerOn(BZ_FREQ);
swapProfile = 1;
} else {
if ((millis() - loop_time) > 200) {
loop_time = millis();
bzstate = !bzstate;
buzzerOn(bzstate ? BZ_FREQ : 0);
}
}
}
buzzerOff();
if (swapProfile) {
setDefaultProfile((defaultProfile + 1) % (TX_PROFILE_COUNT+1));
setupProfile();
txReadEeprom();
delay(500);
return;
}
bindRandomize(false);
chooseChannelsPerRSSI();
txWriteEeprom();
}
just_bind:
// Enter binding mode, automatically after recoding or when pressed for shorter time.
bindMode();
}
}
static inline void checkBND(void)
{
if ((Serial.available() > 3) &&
(Serial.read() == 'B') && (Serial.read() == 'N') &&
(Serial.read() == 'D') && (Serial.read() == '!')) {
buzzerOff();
bindMode();
}
}
static inline void checkFS(void)
{
switch (FSstate) {
case 0:
if (!digitalRead(BTN)) {
FSstate = 1;
FStime = millis();
}
break;
case 1:
if (!digitalRead(BTN)) {
if ((millis() - FStime) > 1000) {
FSstate = 2;
buzzerOn(BZ_FREQ);
}
} else {
FSstate = 0;
}
break;
case 2:
if (digitalRead(BTN)) {
buzzerOff();
FSstate = 0;
}
break;
}
}
uint8_t tx_buf[21];
uint8_t rx_buf[COM_BUF_MAXSIZE];
#define SERIAL_BUF_RX_SIZE 64
#define SERIAL_BUF_TX_SIZE 128
uint8_t serial_rxbuffer[SERIAL_BUF_RX_SIZE];
uint8_t serial_txbuffer[SERIAL_BUF_TX_SIZE];
uint8_t serial_resend[COM_BUF_MAXSIZE];
uint8_t serial_okToSend; // 2 if it is ok to send serial instead of servo
void setup(void)
{
uint32_t start;
watchdogConfig(WATCHDOG_OFF);
setupSPI();
#ifdef SDN_pin
pinMode(SDN_pin, OUTPUT); //SDN
digitalWrite(SDN_pin, 0);
#endif
//LED and other interfaces
pinMode(Red_LED, OUTPUT); //RED LED
pinMode(Green_LED, OUTPUT); //GREEN LED
#ifdef Red_LED2
pinMode(Red_LED2, OUTPUT); //RED LED
pinMode(Green_LED2, OUTPUT); //GREEN LED
#endif
pinMode(BTN, INPUT); //Button
#ifdef TX_MODE1
pinMode(TX_MODE1, INPUT);
digitalWrite(TX_MODE1, HIGH);
#endif
#ifdef TX_MODE2
pinMode(TX_MODE2, INPUT);
digitalWrite(TX_MODE2, HIGH);
#endif
pinMode(PPM_IN, INPUT); //PPM from TX
digitalWrite(PPM_IN, HIGH); // enable pullup for TX:s with open collector output
#if defined (RF_OUT_INDICATOR)
pinMode(RF_OUT_INDICATOR, OUTPUT);
digitalWrite(RF_OUT_INDICATOR, LOW);
#endif
buzzerInit();
#ifdef __AVR_ATmega32U4__
Serial.begin(0); // Suppress warning on overflow on Leonardo
TelemetrySerial.setBuffers(serial_rxbuffer, SERIAL_BUF_RX_SIZE, serial_txbuffer, SERIAL_BUF_TX_SIZE);
#else
Serial.setBuffers(serial_rxbuffer, SERIAL_BUF_RX_SIZE, serial_txbuffer, SERIAL_BUF_TX_SIZE);
Serial.begin(115200);
#endif
setupProfile();
txReadEeprom();
setupPPMinput();
ppmAge = 255;
setupRfmInterrupt();
sei();
start = millis();
while ((ppmAge == 255) && ((millis() - start) < 2000));
buzzerOn(BZ_FREQ);
digitalWrite(BTN, HIGH);
Red_LED_ON ;
Serial.flush();
Serial.print("OpenLRSng TX (gitsly) ");
printVersion(version);
Serial.print(" on HW ");
Serial.println(BOARD_TYPE);
delay(50);
checkBND();
if (bind_data.serial_baudrate && (bind_data.serial_baudrate < 5)) {
serialMode = bind_data.serial_baudrate;
TelemetrySerial.begin((serialMode == 3) ? 100000 : 115200); // SBUS is 100000 rest 115200
} else {
// switch to userdefined baudrate here
TelemetrySerial.begin(bind_data.serial_baudrate);
}
checkButton();
Red_LED_OFF;
buzzerOff();
setupPPMinput(); // need to do this to make sure ppm polarity is correct if profile was changed
altPwrIndex=0;
if(tx_config.flags & ALT_POWER) {
if (bind_data.hopchannel[6] && bind_data.hopchannel[13] && bind_data.hopchannel[20]) {
altPwrIndex=7;
} else {
altPwrIndex=5;
}
}
init_rfm(0);
rfmSetChannel(RF_channel);
rx_reset();
serial_okToSend = 0;
for (uint8_t i = 0; i <= activeProfile; i++) {
delay(50);
buzzerOn(BZ_FREQ);
delay(50);
buzzerOff();
}
if (bind_data.flags & TELEMETRY_FRSKY) {
frskyInit((bind_data.flags & TELEMETRY_MASK) == TELEMETRY_SMARTPORT);
} else if (bind_data.flags & TELEMETRY_MASK) {
// ?
}
watchdogConfig(WATCHDOG_2S);
}
uint8_t compositeRSSI(uint8_t rssi, uint8_t linkq)
{
if (linkq >= 15) {
// RSSI 0 - 255 mapped to 128 - ((255>>2)+192) == 128-255
return (rssi >> 1) + 128;
} else {
// linkquality gives 0 to 14*0 == 126
return linkq * 9;
}
}
#define SBUS_SYNC 0x0f
#define SBUS_TAIL 0x00
#define SPKTRM_SYNC1 0x03
#define SPKTRM_SYNC2 0x01
#define SUMD_HEAD 0xa8
uint8_t frameIndex=0;
uint32_t srxLast=0;
uint8_t srxFlags=0;
uint8_t srxChannels=0;
static inline void processSpektrum(uint8_t c)
{
if (frameIndex == 0) {
frameIndex++;
} else if (frameIndex == 1) {
frameIndex++;
} else if (frameIndex < 16) {
ppmWork.bytes[frameIndex++] = c;
if (frameIndex==16) { // frameComplete
for (uint8_t i=1; i<8; i++) {
uint8_t ch,v;
if (serialMode == 1) {
ch = ppmWork.words[i] >> 10;
v = ppmWork.words[i] & 0x3ff;
} else {
ch = ppmWork.words[i] >> 11;
v = (ppmWork.words[i] & 0x7ff)>>1;
}
if (ch < 16) {
PPM[ch] = v;
}
#ifdef DEBUG_DUMP_PPM
ppmDump = 1;
#endif
ppmAge = 0;
}
}
} else {
frameIndex = 0;
}
}
static inline void processSBUS(uint8_t c)
{
if (frameIndex == 0) {
if (c == SBUS_SYNC) {
frameIndex++;
}
} else if (frameIndex < 24) {
ppmWork.bytes[(frameIndex++)-1] = c;
} else {
if ((frameIndex == 24) && (c == SBUS_TAIL)) {
uint8_t set;
for (set = 0; set < 2; set++) {
PPM[(set<<3)] = ppmWork.sbus.ch[set].ch0 >> 1;
PPM[(set<<3)+1] = ppmWork.sbus.ch[set].ch1 >> 1;
PPM[(set<<3)+2] = ppmWork.sbus.ch[set].ch2 >> 1;
PPM[(set<<3)+3] = ppmWork.sbus.ch[set].ch3 >> 1;
PPM[(set<<3)+4] = ppmWork.sbus.ch[set].ch4 >> 1;
PPM[(set<<3)+5] = ppmWork.sbus.ch[set].ch5 >> 1;
PPM[(set<<3)+6] = ppmWork.sbus.ch[set].ch6 >> 1;
PPM[(set<<3)+7] = ppmWork.sbus.ch[set].ch7 >> 1;
}
if ((ppmWork.sbus.status & 0x08)==0) {
#ifdef DEBUG_DUMP_PPM
ppmDump = 1;
#endif
ppmAge = 0;
}
}
frameIndex = 0;
}
}
static inline void processSUMD(uint8_t c)
{
if ((frameIndex == 0) && (c == SUMD_HEAD)) {
CRC16_reset();
CRC16_add(c);
frameIndex=1;
} else {
if (frameIndex == 1) {
srxFlags = c;
CRC16_add(c);
} else if (frameIndex == 2) {
srxChannels = c;
CRC16_add(c);
} else if (frameIndex < (3 + (srxChannels << 1))) {
if (frameIndex < 35) {
ppmWork.bytes[frameIndex-3] = c;
}
CRC16_add(c);
} else if (frameIndex == (3 + (srxChannels << 1))) {
CRC16_value ^= (uint16_t)c << 8;
} else {
if ((CRC16_value == c) && (srxFlags == 0x01)) {
uint8_t ch;
if (srxChannels > 16) {
srxChannels = 16;
}
for (ch = 0; ch < srxChannels; ch++) {
uint16_t val = (uint16_t)ppmWork.bytes[ch*2]<<8 | (uint16_t)ppmWork.bytes[ch*2+1];
PPM[ch] = servoUs2Bits(val >> 3);
}
#ifdef DEBUG_DUMP_PPM
ppmDump = 1;
#endif
ppmAge = 0;
}
frameIndex = 0;
}
if (frameIndex > 0) {
frameIndex++;
}
}
}
void processChannelsFromSerial(uint8_t c)
{
uint32_t now = micros();
if ((now - srxLast) > 5000) {
frameIndex=0;
}
srxLast=now;
if ((serialMode == 1) || (serialMode == 2)) { // SPEKTRUM
processSpektrum(c);
} else if (serialMode==3) { // SBUS
processSBUS(c);
} else if (serialMode==4) { // SUMD
processSUMD(c);
}
}
uint16_t getChannel(uint8_t ch)
{
uint16_t v=512;
ch = tx_config.chmap[ch];
if (ch < 16) {
cli(); // disable interrupts when copying servo positions, to avoid race on 2 byte variable written by ISR
v = PPM[ch];
sei();
} else if ((ch > 0xf1) && (ch < 0xfd)) {
v = 12 + (ch - 0xf2) * 100;
} else {
switch (ch) {
#ifdef TX_AIN0
#ifdef TX_AIN_IS_DIGITAL
case 16:
v = digitalRead(TX_AIN0) ? 1012 : 12;
break;
case 17:
v = digitalRead(TX_AIN1) ? 1012 : 12;
break;
#else
case 16:
v = analogRead(TX_AIN0);
break;
case 17:
v = analogRead(TX_AIN1);
break;
#endif
#endif
case 18: // mode switch
#if defined(TX_MODE2)
switch ((digitalRead(TX_MODE1)?1:0) | (digitalRead(TX_MODE2)?2:0)) {
case 2:
v = 12;
break;
case 1:
v = 1012;
break;
case 3:
v = 345;
break;
case 0:
v = 678;
break;
}
#elif defined(TX_MODE1)
v = (digitalRead(TX_MODE1) ? 12 : 1012);
#endif
break;
case 0xf0:
v = 0;
break;
case 0xf1:
v = 6;
break;
case 0xfd:
v = 1018;
break;
case 0xfe:
v = 1023;
break;
}
}
return v;
}
void loop(void)
{
#ifdef DEBUG_DUMP_PPM
if (ppmDump) {
uint32_t timeTMP = millis();
Serial.print(timeTMP - lastDump);
lastDump = timeTMP;
TelemetrySerial.print(':');
for (uint8_t i = 0; i < 16; i++) {
TelemetrySerial.print(PPM[i]);
TelemetrySerial.print(',');
}
TelemetrySerial.println();
ppmDump = 0;
}
#endif
if (spiReadRegister(0x0C) == 0) { // detect the locked module and reboot
Serial.println("module locked?");
Red_LED_ON;
init_rfm(0);
rx_reset();
Red_LED_OFF;
}
if (serialMode) {
while (TelemetrySerial.available()) {
uint8_t ch = TelemetrySerial.read();
processChannelsFromSerial(ch);
}
}
#ifdef __AVR_ATmega32U4__
if (serialMode) {
while (Serial.available()) {
processChannelsFromSerial(Serial.read());
}
}
#endif
if (RF_Mode == Received) {
// got telemetry packet
lastTelemetry = micros();
if (!lastTelemetry) {
lastTelemetry = 1; //fixup rare case of zero
}
linkQuality |= 1;
RF_Mode = Receive;
spiSendAddress(0x7f); // Send the package read command
for (int16_t i = 0; i < bind_data.serial_downlink; i++) {
rx_buf[i] = spiReadData();
}
if ((tx_buf[0] ^ rx_buf[0]) & 0x40) {
tx_buf[0] ^= 0x40; // swap sequence to ack
if ((bind_data.flags & TELEMETRY_MASK) == TELEMETRY_MAVLINK) { // Mavlink Rx only sends transparent serial data
const uint8_t byteCount = rx_buf[0] & 0x3F;
uint8_t i;
for (i = 0; i < byteCount; i++) {
const uint8_t ch = rx_buf[i + 1];
TelemetrySerial.write(ch);
}
} else if ((rx_buf[0] & 0x38) == 0x38) {
uint8_t i;
// transparent serial data...
for (i = 0; i<= (rx_buf[0] & 7);) {
i++;
if (bind_data.flags & TELEMETRY_FRSKY) {
frskyUserData(rx_buf[i]);
} else {
TelemetrySerial.write(rx_buf[i]);
}
}
} else if ((rx_buf[0] & 0x3F) == 0) {
RSSI_rx = rx_buf[1];
RX_ain0 = rx_buf[2];
RX_ain1 = rx_buf[3];
#ifdef TEST_DUMP_AFCC
#define SIGNIT(x) ((int16_t)(((x&0x200)?0xFC00U:0)|(x&0x3FF)))
Serial.print(SIGNIT(rfmGetAFCC()));
Serial.print(':');
Serial.println(SIGNIT((rx_buf[4] << 8) + rx_buf[5]));
#endif
linkQualityRX = rx_buf[6];
}
}
if (serial_okToSend == 1) {
serial_okToSend = 2;
}
if (serial_okToSend == 3) {
serial_okToSend = 0;
}
}
uint32_t time = micros();
if ((sampleRSSI) && ((time - sampleRSSI) >= 3000)) {
RSSI_tx = rfmGetRSSI();
sampleRSSI = 0;
}
if ((time - lastSent) >= getInterval(&bind_data)) {
lastSent = time;
watchdogReset();
#ifdef TEST_HALT_TX_BY_CH3
while (PPM[2] > 1013);
#endif
if ((ppmAge < 8) || (!TX_CONFIG_GETMINCH())) {
ppmAge++;
if (lastTelemetry) {
if ((time - lastTelemetry) > getInterval(&bind_data)) {
// telemetry lost
if (!(tx_config.flags & MUTE_TX)) {
buzzerOn(BZ_FREQ);
}
rxerrors++;
lastTelemetry = 0;
} else {
// telemetry link re-established
buzzerOff();
}
}
// Construct packet to be sent
tx_buf[0] &= 0xc0; //preserve seq. bits
if (TelemetrySerial.available() > 0 && (serial_okToSend == 2)) {
tx_buf[0] ^= 0x80; // signal new data on line
uint8_t bytes = 0;
uint8_t maxbytes = 8;
if (getPacketSize(&bind_data) < 9) {
maxbytes = getPacketSize(&bind_data) - 1;
}
while ((bytes < maxbytes) && TelemetrySerial.available() > 0) {
bytes++;
const uint8_t ch = (uint8_t)TelemetrySerial.read();
tx_buf[bytes] = ch;
serial_resend[bytes] = ch;
}
tx_buf[0] |= (0x37 + bytes);
serial_resend[0] = bytes;
serial_okToSend = 3; // sent but not acked
} else if (serial_okToSend == 4) {
uint8_t i;
for (i = 0; i < serial_resend[0]; i++) {
tx_buf[i + 1] = serial_resend[i + 1];
}
tx_buf[0] |= (0x37 + serial_resend[0]);
serial_okToSend = 3; // sent but not acked
} else {
uint16_t PPMout[16];
if (FSstate == 2) {
tx_buf[0] |= 0x01; // save failsafe
Red_LED_ON
} else {
tx_buf[0] |= 0x00; // servo positions
Red_LED_OFF
if (serial_okToSend == 0) {
serial_okToSend = 1;
}
if (serial_okToSend == 3) {
serial_okToSend = 4; // resend
}
}
for (uint8_t i=0; i < 16; i++) {
PPMout[i] = getChannel(i);
}
packChannels(bind_data.flags & 7, PPMout, tx_buf + 1);
}
//Green LED will be on during transmission
Green_LED_ON;
{
uint8_t power = bind_data.rf_power;
if (altPwrIndex && power && (altPwrCount++ == altPwrIndex)) {
altPwrCount=0;
power--;
}
#ifdef TX_MODE1
if (tx_config.flags & SW_POWER) {
if (!digitalRead(TX_MODE1)) {
Red_LED_ON;
power=7;
}
}
#endif
rfmSetPower(power);
}
// Send the data over RF
rfmSetChannel(RF_channel);
tx_packet_async(tx_buf, getPacketSize(&bind_data));
#ifdef TX_MODE1
if (tx_config.flags & SW_POWER) {
if (!digitalRead(TX_MODE1)) {
Red_LED_OFF;
}
}
#endif
//Hop to the next frequency
RF_channel++;
if ((RF_channel == MAXHOPS) || (bind_data.hopchannel[RF_channel] == 0)) {
RF_channel = 0;
}
} else {
if (ppmAge == 8) {
Red_LED_ON;
}
ppmAge = 9;
// PPM data outdated - do not send packets
}
}
if (tx_done() == 1) {
if (bind_data.flags & TELEMETRY_MASK) {
linkQuality <<= 1;
RF_Mode = Receive;
rx_reset();
// tell loop to sample downlink RSSI
sampleRSSI = micros();
if (sampleRSSI == 0) {
sampleRSSI = 1;
}
}
}
if (bind_data.flags & TELEMETRY_FRSKY) {
uint8_t linkQualityTX = countSetBits(linkQuality & 0xfffe);
uint8_t compRX = compositeRSSI(RSSI_rx, linkQualityRX);
uint8_t compTX = compositeRSSI(RSSI_tx, linkQualityTX);
frskyUpdate(RX_ain0, RX_ain1, compRX, compTX, activeProfile);
//frskyUpdate(RX_ain0,RX_ain1,lastTelemetry?RSSI_rx:0,lastTelemetry?RSSI_tx:0);
}
//Green LED will be OFF
Green_LED_OFF;
checkFS();
}