-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_pretraining.py
385 lines (348 loc) · 16.1 KB
/
run_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pre-trains an ELECTRA model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import collections
import json
import tensorflow.compat.v1 as tf
import configure_pretraining
from model import modeling
from model import optimization
from pretrain import pretrain_data
from pretrain import pretrain_helpers
from util import training_utils
from util import utils
class PretrainingModel(object):
"""Transformer pre-training using the replaced-token-detection task."""
def __init__(self, config: configure_pretraining.PretrainingConfig,
features, is_training):
# Set up model config
self._config = config
self._bert_config = training_utils.get_bert_config(config)
if config.debug:
self._bert_config.num_hidden_layers = 3
self._bert_config.hidden_size = 144
self._bert_config.intermediate_size = 144 * 4
self._bert_config.num_attention_heads = 4
# Mask the input
masked_inputs = pretrain_helpers.mask(
config, pretrain_data.features_to_inputs(features), config.mask_prob)
# Generator
embedding_size = (
self._bert_config.hidden_size if config.embedding_size is None else
config.embedding_size)
if config.uniform_generator:
mlm_output = self._get_masked_lm_output(masked_inputs, None)
elif config.electra_objective and config.untied_generator:
generator = self._build_transformer(
masked_inputs, is_training,
bert_config=get_generator_config(config, self._bert_config),
embedding_size=(None if config.untied_generator_embeddings
else embedding_size),
untied_embeddings=config.untied_generator_embeddings,
name="generator")
mlm_output = self._get_masked_lm_output(masked_inputs, generator)
else:
generator = self._build_transformer(
masked_inputs, is_training, embedding_size=embedding_size)
mlm_output = self._get_masked_lm_output(masked_inputs, generator)
fake_data = self._get_fake_data(masked_inputs, mlm_output.logits)
self.mlm_output = mlm_output
self.total_loss = config.gen_weight * mlm_output.loss
# Discriminator
disc_output = None
if config.electra_objective:
discriminator = self._build_transformer(
fake_data.inputs, is_training, reuse=not config.untied_generator,
embedding_size=embedding_size)
disc_output = self._get_discriminator_output(
fake_data.inputs, discriminator, fake_data.is_fake_tokens)
self.total_loss += config.disc_weight * disc_output.loss
# Evaluation
eval_fn_inputs = {
"input_ids": masked_inputs.input_ids,
"masked_lm_preds": mlm_output.preds,
"mlm_loss": mlm_output.per_example_loss,
"masked_lm_ids": masked_inputs.masked_lm_ids,
"masked_lm_weights": masked_inputs.masked_lm_weights,
"input_mask": masked_inputs.input_mask
}
if config.electra_objective:
eval_fn_inputs.update({
"disc_loss": disc_output.per_example_loss,
"disc_labels": disc_output.labels,
"disc_probs": disc_output.probs,
"disc_preds": disc_output.preds,
"sampled_tokids": tf.argmax(fake_data.sampled_tokens, -1,
output_type=tf.int32)
})
eval_fn_keys = eval_fn_inputs.keys()
eval_fn_values = [eval_fn_inputs[k] for k in eval_fn_keys]
def metric_fn(*args):
"""Computes the loss and accuracy of the model."""
d = {k: arg for k, arg in zip(eval_fn_keys, args)}
metrics = dict()
metrics["masked_lm_accuracy"] = tf.metrics.accuracy(
labels=tf.reshape(d["masked_lm_ids"], [-1]),
predictions=tf.reshape(d["masked_lm_preds"], [-1]),
weights=tf.reshape(d["masked_lm_weights"], [-1]))
metrics["masked_lm_loss"] = tf.metrics.mean(
values=tf.reshape(d["mlm_loss"], [-1]),
weights=tf.reshape(d["masked_lm_weights"], [-1]))
if config.electra_objective:
metrics["sampled_masked_lm_accuracy"] = tf.metrics.accuracy(
labels=tf.reshape(d["masked_lm_ids"], [-1]),
predictions=tf.reshape(d["sampled_tokids"], [-1]),
weights=tf.reshape(d["masked_lm_weights"], [-1]))
if config.disc_weight > 0:
metrics["disc_loss"] = tf.metrics.mean(d["disc_loss"])
metrics["disc_auc"] = tf.metrics.auc(
d["disc_labels"] * d["input_mask"],
d["disc_probs"] * tf.cast(d["input_mask"], tf.float32))
metrics["disc_accuracy"] = tf.metrics.accuracy(
labels=d["disc_labels"], predictions=d["disc_preds"],
weights=d["input_mask"])
metrics["disc_precision"] = tf.metrics.accuracy(
labels=d["disc_labels"], predictions=d["disc_preds"],
weights=d["disc_preds"] * d["input_mask"])
metrics["disc_recall"] = tf.metrics.accuracy(
labels=d["disc_labels"], predictions=d["disc_preds"],
weights=d["disc_labels"] * d["input_mask"])
return metrics
self.eval_metrics = (metric_fn, eval_fn_values)
def _get_masked_lm_output(self, inputs: pretrain_data.Inputs, model):
"""Masked language modeling softmax layer."""
masked_lm_weights = inputs.masked_lm_weights
with tf.variable_scope("generator_predictions"):
if self._config.uniform_generator:
logits = tf.zeros(self._bert_config.vocab_size)
logits_tiled = tf.zeros(
modeling.get_shape_list(inputs.masked_lm_ids) +
[self._bert_config.vocab_size])
logits_tiled += tf.reshape(logits, [1, 1, self._bert_config.vocab_size])
logits = logits_tiled
else:
relevant_hidden = pretrain_helpers.gather_positions(
model.get_sequence_output(), inputs.masked_lm_positions)
hidden = tf.layers.dense(
relevant_hidden,
units=modeling.get_shape_list(model.get_embedding_table())[-1],
activation=modeling.get_activation(self._bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
self._bert_config.initializer_range))
hidden = modeling.layer_norm(hidden)
output_bias = tf.get_variable(
"output_bias",
shape=[self._bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(hidden, model.get_embedding_table(),
transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
oh_labels = tf.one_hot(
inputs.masked_lm_ids, depth=self._bert_config.vocab_size,
dtype=tf.float32)
probs = tf.nn.softmax(logits)
log_probs = tf.nn.log_softmax(logits)
label_log_probs = -tf.reduce_sum(log_probs * oh_labels, axis=-1)
numerator = tf.reduce_sum(inputs.masked_lm_weights * label_log_probs)
denominator = tf.reduce_sum(masked_lm_weights) + 1e-6
loss = numerator / denominator
preds = tf.argmax(log_probs, axis=-1, output_type=tf.int32)
MLMOutput = collections.namedtuple(
"MLMOutput", ["logits", "probs", "loss", "per_example_loss", "preds"])
return MLMOutput(
logits=logits, probs=probs, per_example_loss=label_log_probs,
loss=loss, preds=preds)
def _get_discriminator_output(self, inputs, discriminator, labels):
"""Discriminator binary classifier."""
with tf.variable_scope("discriminator_predictions"):
hidden = tf.layers.dense(
discriminator.get_sequence_output(),
units=self._bert_config.hidden_size,
activation=modeling.get_activation(self._bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
self._bert_config.initializer_range))
logits = tf.squeeze(tf.layers.dense(hidden, units=1), -1)
weights = tf.cast(inputs.input_mask, tf.float32)
labelsf = tf.cast(labels, tf.float32)
losses = tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits, labels=labelsf) * weights
per_example_loss = (tf.reduce_sum(losses, axis=-1) /
(1e-6 + tf.reduce_sum(weights, axis=-1)))
loss = tf.reduce_sum(losses) / (1e-6 + tf.reduce_sum(weights))
probs = tf.nn.sigmoid(logits)
preds = tf.cast(tf.round((tf.sign(logits) + 1) / 2), tf.int32)
DiscOutput = collections.namedtuple(
"DiscOutput", ["loss", "per_example_loss", "probs", "preds",
"labels"])
return DiscOutput(
loss=loss, per_example_loss=per_example_loss, probs=probs,
preds=preds, labels=labels,
)
def _get_fake_data(self, inputs, mlm_logits):
"""Sample from the generator to create corrupted input."""
inputs = pretrain_helpers.unmask(inputs)
disallow = tf.one_hot(
inputs.masked_lm_ids, depth=self._bert_config.vocab_size,
dtype=tf.float32) if self._config.disallow_correct else None
sampled_tokens = tf.stop_gradient(pretrain_helpers.sample_from_softmax(
mlm_logits / self._config.temperature, disallow=disallow))
sampled_tokids = tf.argmax(sampled_tokens, -1, output_type=tf.int32)
updated_input_ids, masked = pretrain_helpers.scatter_update(
inputs.input_ids, sampled_tokids, inputs.masked_lm_positions)
labels = masked * (1 - tf.cast(
tf.equal(updated_input_ids, inputs.input_ids), tf.int32))
updated_inputs = pretrain_data.get_updated_inputs(
inputs, input_ids=updated_input_ids)
FakedData = collections.namedtuple("FakedData", [
"inputs", "is_fake_tokens", "sampled_tokens"])
return FakedData(inputs=updated_inputs, is_fake_tokens=labels,
sampled_tokens=sampled_tokens)
def _build_transformer(self, inputs: pretrain_data.Inputs, is_training,
bert_config=None, name="electra", reuse=False, **kwargs):
"""Build a transformer encoder network."""
if bert_config is None:
bert_config = self._bert_config
with tf.variable_scope(tf.get_variable_scope(), reuse=reuse):
return modeling.BertModel(
bert_config=bert_config,
is_training=is_training,
input_ids=inputs.input_ids,
input_mask=inputs.input_mask,
token_type_ids=inputs.segment_ids,
use_one_hot_embeddings=self._config.use_tpu,
scope=name,
**kwargs)
def get_generator_config(config: configure_pretraining.PretrainingConfig,
bert_config: modeling.BertConfig):
"""Get model config for the generator network."""
gen_config = modeling.BertConfig.from_dict(bert_config.to_dict())
gen_config.hidden_size = int(round(
bert_config.hidden_size * config.generator_hidden_size))
gen_config.num_hidden_layers = int(round(
bert_config.num_hidden_layers * config.generator_layers))
gen_config.intermediate_size = 4 * gen_config.hidden_size
gen_config.num_attention_heads = max(1, gen_config.hidden_size // 64)
return gen_config
def model_fn_builder(config: configure_pretraining.PretrainingConfig):
"""Build the model for training."""
def model_fn(features, labels, mode, params):
"""Build the model for training."""
model = PretrainingModel(config, features,
mode == tf.estimator.ModeKeys.TRAIN)
utils.log("Model is built!")
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
model.total_loss, config.learning_rate, config.num_train_steps,
weight_decay_rate=config.weight_decay_rate,
use_tpu=config.use_tpu,
warmup_steps=config.num_warmup_steps,
lr_decay_power=config.lr_decay_power
)
output_spec = tf.estimator.tpu.TPUEstimatorSpec(
mode=mode,
loss=model.total_loss,
train_op=train_op,
training_hooks=[training_utils.ETAHook(
{} if config.use_tpu else dict(loss=model.total_loss),
config.num_train_steps, config.iterations_per_loop,
config.use_tpu)]
)
elif mode == tf.estimator.ModeKeys.EVAL:
output_spec = tf.estimator.tpu.TPUEstimatorSpec(
mode=mode,
loss=model.total_loss,
eval_metrics=model.eval_metrics,
evaluation_hooks=[training_utils.ETAHook(
{} if config.use_tpu else dict(loss=model.total_loss),
config.num_eval_steps, config.iterations_per_loop,
config.use_tpu, is_training=False)])
else:
raise ValueError("Only TRAIN and EVAL modes are supported")
return output_spec
return model_fn
def train_or_eval(config: configure_pretraining.PretrainingConfig):
"""Run pre-training or evaluate the pre-trained model."""
if config.do_train == config.do_eval:
raise ValueError("Exactly one of `do_train` or `do_eval` must be True.")
if config.debug and config.do_train:
utils.rmkdir(config.model_dir)
utils.heading("Config:")
utils.log_config(config)
is_per_host = tf.estimator.tpu.InputPipelineConfig.PER_HOST_V2
tpu_cluster_resolver = None
if config.use_tpu and config.tpu_name:
tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
config.tpu_name, zone=config.tpu_zone, project=config.gcp_project)
tpu_config = tf.estimator.tpu.TPUConfig(
iterations_per_loop=config.iterations_per_loop,
num_shards=config.num_tpu_cores,
tpu_job_name=config.tpu_job_name,
per_host_input_for_training=is_per_host)
run_config = tf.estimator.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=config.model_dir,
save_checkpoints_steps=config.save_checkpoints_steps,
keep_checkpoint_max=config.keep_checkpoint_max,
tpu_config=tpu_config)
model_fn = model_fn_builder(config=config)
estimator = tf.estimator.tpu.TPUEstimator(
use_tpu=config.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=config.train_batch_size,
eval_batch_size=config.eval_batch_size)
if config.do_train:
utils.heading("Running training")
estimator.train(input_fn=pretrain_data.get_input_fn(config, True),
max_steps=config.num_train_steps)
if config.do_eval:
utils.heading("Running evaluation")
result = estimator.evaluate(
input_fn=pretrain_data.get_input_fn(config, False),
steps=config.num_eval_steps)
for key in sorted(result.keys()):
utils.log(" {:} = {:}".format(key, str(result[key])))
return result
def train_one_step(config: configure_pretraining.PretrainingConfig):
"""Builds an ELECTRA model an trains it for one step; useful for debugging."""
train_input_fn = pretrain_data.get_input_fn(config, True)
features = tf.data.make_one_shot_iterator(train_input_fn(dict(
batch_size=config.train_batch_size))).get_next()
model = PretrainingModel(config, features, True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
utils.log(sess.run(model.total_loss))
def main():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--data-dir", required=True,
help="Location of data files (model weights, etc).")
parser.add_argument("--model-name", required=True,
help="The name of the model being fine-tuned.")
parser.add_argument("--hparams", default="{}",
help="JSON dict of model hyperparameters.")
args = parser.parse_args()
if args.hparams.endswith(".json"):
hparams = utils.load_json(args.hparams)
else:
hparams = json.loads(args.hparams)
tf.logging.set_verbosity(tf.logging.ERROR)
train_or_eval(configure_pretraining.PretrainingConfig(
args.model_name, args.data_dir, **hparams))
if __name__ == "__main__":
main()