-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsegnet_basic.py
88 lines (71 loc) · 3.07 KB
/
segnet_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, BatchNormalization, Activation, MaxPooling2D, UpSampling2D
class SegNetBasic(Sequential):
def __init__(self, no_of_classes, height, width):
super(Model, self).__init__()
self.add(Conv2D(filters=64, kernel_size=(3, 3), padding='same', input_shape=(height, width, 3))) # Input layer
self.add(BatchNormalization())
self.add(Activation(activation='relu'))
max1, max2, max3, max4, max5 = self.encoder()
self.decoder(max1, max2, max3, max4, max5)
self.add(Conv2D(filters=no_of_classes, kernel_size=(1, 1), padding='same'))
self.add(Activation('softmax')) # output size (None, 480, 640, 11)
def decoder(self, max1, max2, max3, max4, max5):
up1 = self.add(UpSampling2D())
self.add(Merge(up1, max5))
self.convolution_block(512)
self.convolution_block(512)
self.convolution_block(512)
self.add(Dropout(0.2))
up2 = self.add(UpSampling2D())
self.add(Merge(up2, max4))
self.convolution_block(512)
self.convolution_block(512)
self.convolution_block(256)
self.add(Dropout(0.2))
up3 = self.add(UpSampling2D())
self.add(Merge(up3, max3))
self.convolution_block(256)
self.convolution_block(256)
self.convolution_block(128)
self.add(Dropout(0.2))
up4 = self.add(UpSampling2D())
self.add(Merge(up4, max2))
self.convolution_block(128)
self.convolution_block(64)
self.add(Dropout(0.2))
up5 = self.add(UpSampling2D())
self.add(Merge(up5, max1))
self.convolution_block(64)
self.add(Dropout(0.2))
def encoder(self):
self.convolution_block(64)
max1 = self.add(MaxPooling2D())
self.convolution_block(128)
self.convolution_block(128)
max2 = self.add(MaxPooling2D())
self.convolution_block(256)
self.convolution_block(256)
self.convolution_block(256)
max3 = self.add(MaxPooling2D())
self.convolution_block(512)
self.convolution_block(512)
self.convolution_block(512)
max4 = self.add(MaxPooling2D())
self.convolution_block(512)
self.convolution_block(512)
self.convolution_block(512)
max5 = self.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
return max1, max2, max3, max4, max5
def convolution_block(self, filters):
# Apply Convoution, Batch Normalization, ReLU
self.add(Conv2D(filters=filters, kernel_size=(3, 3), padding='same'))
self.add(BatchNormalization())
self.add(Activation(activation='relu'))
# self.add(Dropout(rate=0.1))
# def convolution_block(self, filters):
# # Apply successivly Transposed Convolution, BatchNormalization, ReLU nonlinearity
# self.add(Conv2D(filters=filters, kernel_size=(3,3), padding='same'))
# self.add(BatchNormalization())
# self.add(Activation(activation='relu'))
# # self.add(Dropout(rate=0.2))