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Abstract

Some programming languages provide language-level integration for event processing. Object-
oriented languages offer language constructs for imperatively triggered events as object at-
tributes. Aspect-oriented languages feature implicit events that are defined as identifiable
points in the control flow of a program. However, such a language-level integration is not
yet available for complex event processing (CEP) where event streams from multiple sources are
combined to infer higher-level and more abstract complex events. In this thesis we propose an
approach to introduce language-level support for CEP into Scala.

Zusammenfassung

Manche Programmiersprachen haben eine tiefe Integration für die Verarbeitung von Ereignis-
sen: Objektorientierte Sprachen enthalten Sprachkonstrukte, die es ermöglichen Ereignisse als
explizit auslösbare Objektattribute auszudrücken. Aspektorientierte Sprachen unterstützen im-
plizite Ereignisse, die durch identifizierbare Punkte im Ablauf eines Programms definiert sind.
Diese Art von Sprachintegration ist jedoch noch nicht für Complex Event Processing (CEP) ver-
fügbar, eine Technik bei der Ereignisse aus einer Vielzahl von Quellen miteinander kombiniert
werden um abstraktere komplexe Ereignisse abzuleiten. In dieser Thesis besprechen wir einen
Ansatz zur Integration von CEP in Scala auf Sprachebene.
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1 Introduction

Most contemporary computer programs make use of event-processing. Event-driven program-
ming is used for the processing of real-time data, reactive behaviors of user interfaces, control
automation, and more. Examples of events in different domains are, in a computer application,
the click on a user interface element, at the stock market, the update tick of a security, and, on
a news website, the publication of a new article [1].

Noticeably, events have found their way into programming languages: there are languages
(e.g. C#) that implement events natively as language constructs. However, most languages (e.g.
Java) do not explicitly implement them but instead rely on design patterns like the Observer
pattern.

In Scala, events are handled similarly to Java. However, EScala [2], a DSL and language
extension to Scala, defines events as object fields (similarly to C#) and introduces an event
expression language which allows developers to compose and transform existing events into
new events.

To understand the meaning of events and complex events, and to classify the different ap-
proaches in this context, we will first look into their definitions.

Event Processing is a method of tracking and analyzing (processing) streams of information
(data) about things that happen (events) and deriving conclusions from them. Complex Event
Processing (CEP) is event processing that combines multiple sources of simple events or event
patterns to higher-level and more abstract complex events. The goal of CEP is to identify
meaningful events (such as opportunities or threats) and respond to them appropriately and
as quickly as possible [3].

While both C# and EScala support simple events in an intuitive object-oriented programming
style, this breed of events offers only limited functionality in the context of Big Data, the emer-
gent trend in modern computing. Today data sources like sensors (RFID1, NFC2), web activities,
transactions, social networks, etc. create an avalanche of data that requires efficient and fast
processing for which traditional DBMS are not applicable because they cannot fulfill the require-
ments of timeliness coming from such domains [4]. Here we need new methods, like CEP, which
has proven useful in processing Big Data [5].

CEP is widely used in algorithmic trading, surveillance and alarm systems, network monitor-
ing, intrusion detection, traffic management and many other areas [1], [4].

Often, none of the individual events stand out when considered on their own but the com-
bination of events in a short time frame can be significant. When isolated events, sometimes
hundreds or thousands, are aggregated and correlated to higher-level and more abstract com-
plex events, a coherent picture of the situation can be built which has meaning at the business
rather than on the transactional level. It is this ability to automatically detect and react to subtle
cues that makes CEP so powerful [6].

Available CEP engines from both academia and industry include Cayuga [7], Aurora [8],
Borealis [9], Esper [10], StreamBase, and Oracle CEP 10g, just to name a few. They use an
SQL-like query language and do not provide a deep level of integration with programming
languages and object-oriented programming paradigms.
1 Radio-frequency identification
2 Near field communication

1



In summary, we have noted the existence of (i) programming languages with language-level
support for events and (ii) programming libraries with support for complex event processing
but without a deep language-level integration. There is a missing spot, namely a programming
language or library that supports CEP and, at the same time, provides straight-forward language-
level integration. This spot is the focus of our research.

Our thesis provides the following contribution:

• We provide CEScala, a DSL embedded in Scala that features the expressivity of CEP li-
braries without relinquishing the level of language integration of events offered by event-
based languages.

• We provide a type-safe implementation of CEScala that incorporates the same API as
EScala.

• We evaluate the performance of our implementation and highlight the design factors that
influence efficiency.

The thesis is structured as follows. In section 2 we overview the related work. In section 3 we
present the design of CEScala. In section 4 we discuss the significant details of the implementa-
tion. We evaluate our work in section 5. In section 6 we conclude the thesis and outline future
work.
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2 State of the Art

This section discusses related work. The design of CEScala combines elements from event-driven
programming, CEP libraries, and Language-integrated Query implementations. We discuss the
relation of our work to each of these areas in dedicated subsections.

2.1 Event Processing and Event-based Languages

Aspect-oriented programming (AOP), an example implementation is AspectJ [11], is a technique
that improves separation of concerns in software. AOP provides language mechanisms that
explicitly capture crosscutting structure. It features implicit events aka join points: events that
are not explicitly declared but are instead defined as identifiable points in the control-flow of a
program such as the end of a method invocation. AOP avoids the explicit triggering of events
at these points by letting aspects observe them directly. This simplifies the code and reduces the
need for preplanning.

EScala [2] is a DSL that implements C#-like events in Scala. It is a language design that
combines imperatively triggered events with AOP mechanisms like implicit events. At its core
EScala facilitates stitching together different components using events, which avoids the verbose
boilerplate code that is needed when using the Observer pattern instead. Events are represented
as object attributes and have to be referenced in this way to trigger them or attach new reactions.
At the same time, EScala introduces an event expression language that enables composing and
transforming events, cf. section 3.1.3.

Ptolemy [12] is a language that combines ideas of imperative events and AOP. Unlike EScala,
Ptolemy does not provide implicit events. Event handlers react to events characterized by their
type which fully decouples event sources and sinks.

An alternative to events as object attributes are publish-subscribe systems [13] which achieve
a higher degree of decoupling by introducing a global event system in which some components
publish events and other components subscribe to them. Thus, such systems have no direct
connection between objects that trigger events and objects that react to them. However, this
high-level degree of decoupling is not always desirable because it makes the software more
difficult to understand and maintain [2].

2.2 Complex Event Processing Systems

An increasing number of distributed applications require processing continuously flowing data
at an unpredictable rate to obtain timely responses to complex queries. Traditional DBMSs re-
quire data to be (persistently) stored and indexed before it can be processed, and the processing
only occurs when explicitly asked by the user, i.e. asynchronously with respect to its arrival.
Therefore, storing events in a traditional database and then querying it yields very poor per-
formance. Both aspects contrast with the requirements of real-time applications which include
processing data as soon as it becomes available and discarding irrelevant data. These require-
ments have led to the development of systems specifically designed to process information as a
flow, according to a set of pre-deployed processing rules. Despite having a common goal, these

3



systems differ in a wide range of aspects, including architecture, data models, rule languages,
and processing mechanisms. Two models have emerged and are today competing: the data
stream processing model and the complex event processing model [4].

Data Stream Processing systems use query languages that have very limited expression power
and only allow simple selection predicates. They trade expressiveness for performance [14].
Examples of such systems are Aurora [8] and Borealis [9]. When well engineered, they exhibit
very high scalability in both the number of queries and the stream rate. However, their inability
to express queries that span multiple input events makes them unsuitable for complex event
processing [7].

Esper [10] and Cayuga [7] feature full CEP support. Since Cayuga is designed to lever-
age the traditional publication-subscription techniques, it allows high scalability, and its system
architecture also supports a large number of concurrent subscriptions [14].

Esper is similar to Cayuga but it also has the ability to express complex matching conditions
that includes temporal windows, joining of different event streams, as well as filtering and
sorting them. Furthermore, it also has the ability to detect sequences and patterns of unrelated
events.

There are also several commercial CEP engines in the market but most of them have been
built on top of open source CEP engines such as StreamBase on Aurora and Oracle CEP 10g on
Esper [15]. Details about them have limited availability due to their commercial nature.

2.3 Language-integrated Query

Because most CEP engines are controlled using an SQL-like language, much can be learned from
examining how relational databases are accessed in modern programming languages.

One of the primary aspects of this situation is impedance mismatch between the relational
model and the paradigm employed by most general-purpose programming languages. Concepts
are expressed very differently in a relational database than in a standard memory model. The
prevalent solution to this problem of conceptual orthogonality is to give up attempting to adapt
one world to the other and let the different conceptual paradigms remain separate. In this solu-
tion the application layer retrieves data as necessary from the relational store by using concepts
native to a relational database: declarative query languages such as SQL. This is by far the sim-
plest approach to application-level database access but it comes with significant disadvantages
[16].

Unlike the situation for “normal” programming language constructs, a compiler is not aware
of the semantics of embedded database queries, and thus offers no help regarding their well-
formedness checking or their processing. Approaches to overcome these shortcomings fall under
the general umbrella of language-integrated query, of which embedded SQL is an early example
and Microsoft LINQ today’s best-known representative [17].

Implementations of language-integrated query in Scala include Squeryl [18], ScalaQL [16],
ScalaQuery, and Slick which is part of the Typesafe Stack. Those implementations define their
own DSLs for accessing relational databases. Internally, they create representations of the de-
sired queries in abstract syntax trees which enables the Scala compiler to check queries for
well-formedness and sometimes even optimize them.
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3 The CEScala Library

This section presents CEScala, a Scala library with support for complex event-driven designs
based on EScala [2]. In a nutshell, CEScala combines the interface of EScala with Esper, a
CEP engine written in Java. Because EScala is fully integrated into the Scala language, it is
better suited for object-oriented programming than Esper’s cumbersome own SQL-like API, cf.
section 2.3. Thus, CEScala merges the advantages of the expressivity and the complex event
processing capabilities of Esper with the simplicity and language-level integration of the EScala
interface.

3.1 The EScala DSL in a nutshell

Because CEScala is based on EScala’s interface, the syntax that is used for event declaration,
composition and reaction binding corresponds to that of EScala. We describe this syntax in the
following subsections.

3.1.1 Event Declaration

Events can be either imperative or declarative. They can collect data about the context of their
occurrence. The type of the data has to be specified using Scala’s type system by adding the type
in square brackets after the event. If an event should not collect any data, the Unit type has
to be used. By convention, events collecting several types of data can be specified using tuple
types. Custom types are supported but they have to be declared at the top-level (i.e. they cannot
be nested).1 We recommend making events and event properties immutable (in accordance to
[10]), however this is not a hard requirement and CEScala also accepts events that are mutable.

Imperative events are declared using the ImperativeEvent class and must be explicitly
triggered. Declarative events are defined by event expressions which compose and transform
other event expressions, including imperative events, cf. section 3.1.3.

3.1.2 Binding Reactions to Events

Analogous to C#, reactions can be registered with events by expressions of the form
ev += react where ev denotes the event name and react denotes a function imple-
menting the reaction. Similarly, reactions can be unregistered by expressions of the form
ev -= react. A reaction to an event can be any function whose type is compatible with
the data type of the event, i.e. the argument type of the function must be equal to the data type
of the event or a supertype thereof.

1 Otherwise Scala’s ClassTag and TypeTag constructs, which are used in the implementation of CEScala, do
not work.
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3.1.3 Event Expression Language

Events are syntactically defined by event expressions. The simplest event expressions are already
defined events. Event operators can then be used to compose and transform other event expres-
sions to define new events. The semantics of event expressions are explained below where ev1
and ev2 denote event expressions. Those event expressions are already supported by EScala
but we have re-implemented them in CEScala using Esper as the backend.

The expression ev1 || ev2 denotes the union of ev1 and ev2. This expression matches
event occurrences matched by ev1 or ev2. The data type of the expression is the least common
supertype of the data types ev1 and ev2.

The expression ev1 && func filters ev1 by an arbitrary boolean function func taking the
data of the event as a parameter.

The expression ev1.map(func) matches an occurrence matched by ev1 in which case the
data collected by ev1 is transformed by func.

3.2 Extending EScala—The CEScala DSL

By using Esper as our event processing engine we can provide several new language constructs.

3.2.1 join

The most significant addition to EScala is event joining: Two different events can be joined
together on a specified condition using the join operator (quite like the join operator in
SQL).

When performing a join in CEScala the following parameters must be specified: a reference to
the second event, the time or length window of each event, and the join condition. The window
argument specifies the time window (e.g. the last minute) or the length window (e.g. the last
100 events) of events in which the join condition is evaluated. The join condition is a predicate
that is used to test combinations of the event occurrences. When the left event has n parameters
and the right event has m parameters, the joined event is a tuple merging both event types (and
is therefore of size n+m). The parameters of the left-side event can be accessed via the first n
elements of the tuple, the parameters of the right-side event via the last m elements.

The event window is defined using the syntax time(t) where t denotes the time interval
into the past to observe for a time window or length(l) where l denotes the number of past
event to observe for a length window. The time interval t is defined using the syntax n units
where n is an integer and units is one of the following: msec, sec, min, hour, hours,
day, or days.

When defining the join condition, event properties are referenced in the same way as tuples
in Scala, e.g. ev1._1 references the first property of the event ev1. Condition expressions
are defined using the syntax p1 OP p2 where p1 and p2 denote event properties, and OP
denotes the condition operator. CEScala supports the following condition operators:

• === which returns true when the left event property is equal to the right event property,

• !== which returns true when the left event property is not equal to the right event prop-
erty,

6



Listing 3.1: Two events joined on a condition

1 var joinedString = ""
2 val ev1 = new ImperativeEvent[Int]
3 val ev2 = new ImperativeEvent[(Int, String)]
4 val ev3 = ev1 join ev2 window time(30 sec) on ((ev1, ev2) => ev1._1 ===

ev2._1)
5 val r1 = (e: (Int, Int, String)) => testString += e._3
6 ev3 += r1

• < which returns true when the left event property is smaller than the right event property,

• > which returns true when the left event property is larger than the right event property,

• <= which returns true when the left event property is smaller than or equal to the right
event property, and

• >= which returns true when the left event property is larger than or equal to the right
event property.

Condition expressions can be chained using the && and || operators for conjunction and
disjunction, respectively.

The join operator in CEScala comes in two flavours. There is a full syntax and a short one
which can be used when both event windows are the same.

The full join expression is ev1.window(ev1-window) join ev2.window(ev2-
window) on ((ev1, ev2) => condition) where ev1 and ev2 denote event ex-
pressions, ev1-window and ev2-window denote the corresponding event windows, and
condition denotes the join condition.

The short join expression is ev1 join ev2 window ev-window on ((ev1, ev2)
=> condition) where ev1 and ev2 denote event expressions, ev-window denotes the
shared event window, and condition denotes the join condition.

For example, Listing 3.1 demonstrates a join using the short syntax. The join includes the
events ev1 and ev2 (lines 2–3) that were triggered within the last 30 seconds, on the condi-
tion that their respective first parameters are equal (line 4). Every time the join is performed,
CEScala runs the reaction that is attached to it. In this case, the second parameter of ev2 (a
String) is appended to the variable joinedString (line 5).

3.2.2 repeat

Sometimes it makes sense to wait for an event to trigger several times before a reaction is
executed. This is precisely how the repeat operator in CEScala is used. A given number of
event occurrences (n) are aggregated in a Seq and reactions use this Seq as input. After the
reaction has been run the aggregation process restarts and when another n events have been
collected the reaction is run again on the new batch of events.

The syntax of the repeat event pattern is as follows: ev repeat n where ev denotes
the event name and n denotes the number of occurrences to be aggregated. Repeat event
expressions cannot be referenced in other event expressions.
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Listing 3.2: A repeat event expression

1 val ev1 = new ImperativeEvent[Int]
2 val ev2 = ev1 repeat 3
3 val r1 = (e: Seq[Int]) => {
4 println("First event: " + e(0)
5 println("Second event: " + e(1)
6 println("Third event: " + e(2)
7 }
8 ev3 += r1

Listing 3.2 demonstrates a repeat event expression in which a reaction is run after three
event occurrences have been collected. The reaction prints out the values of all collected event
occurrences.

8



4 Implementation

Since the interfaces of CEScala and Esper are radically different, a strategy of mapping CEScala
events to Esper must be used. There is a number of design parameters involved, including:
How should CEScala’s imperative events be mapped to Esper’s event streams? Which Esper
event representation should be used? Should event listeners be bound to Esper statements as
UpdateListeners or as subscribers? How should event transformations be handled?
This section describes the design choices made during the creation of CEScala and the reasoning
behind them.

4.1 Event Representation

To enable compatibility with EScala, CEScala events are defined by value types for events with
only one property and by tuple types for events with multiple properties. Since neither is sup-
ported by Esper directly, the value or tuple must be converted to an appropriate representation.

Esper supports four different representations of events: POJO, Map, Object[], and XML.
We have chosen to use Object-array representation because it exhibits the best performance and
memory usage characteristics [10].

4.1.1 Mapping Events to Esper

There are two different methods of converting CEScala events to Esper events: The first option is
to map each CEScala event declaration to its own event stream in Esper, which is the most obvi-
ous way. In contrast, the second option is to group all event declarations with the same property
types to merged event streams and then differentiate the CEScala events with an additional
event id parameter (which can be filtered by Esper), cf. Figures 4.1 and 4.2. Since complex
event processing engines are usually optimized for a high event throughput but not necessarily
for a high number of different event streams, the second method might be performance-wise
better. However, this depends largely on the internal implementation of complex event process-
ing in Esper. We have opted to implement the basic functionality using both methods in CEScala
in order to evaluate them with different benchmarks and then choose the best method in terms
of performance, cf. section 5.2. We describe the specifics of the implementation with merged
event streams in the following section.

4.1.2 Merged Event Streams

When mapping several CEScala events of the same type to a single event stream in Esper, we
need to add an additional event property in Esper which is used to identify the original events.
We illustrate this in Figure 4.2.

Listing 4.1 presents the code changes necessary for merged event streams. We create two
maps, propertiesToEsperEventMap which tracks different property type combinations
and maps them to Esper event names, and cescalaToEsperEventMap which tracks
CEScala event names and maps them to Esper event names. We use the former to decide

9



Figure 4.1: Separate Event Streams Figure 4.2: Merged Event Streams
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Listing 4.1: Merged event streams

1 // track different property type combinations
2 val propertiesToEsperEventMap = mutable.HashMap[Array[AnyRef], String]()
3

4 // track which CEScala event corresponds to which Esper event
5 val cescalaToEsperEventMap = mutable.HashMap[String, String]()
6

7 def addEventType(name: String, propertyTypes: Array[AnyRef]) {
8 propertiesToEsperEventMap.get(propertyTypes) match {
9 case Some(_) => // do nothing
10 case _ => [...] // create new event stream
11 }
12 }
13

14 def sendEvent[T: TypeTag](name: String, properties: T) {
15 [...]
16 epService.getEPRuntime.sendEvent([...], cescalaToEsperEventMap.get(

name).get)
17 }

whether we need to create a new Esper stream (lines 8–11) and we use the latter to deduce
which Esper event we have to trigger when a CEScala event is triggered (line 16).

We present our performance evaluation of this alternative solution in section 5.2.

4.1.3 Handling Events with Multiple Properties

Another issue is how to handle events with multiple properties. Since the original EScala library
endorses using tuples for the propagation of multiple properties, we have chosen to implement
CEScala similarly. Because Esper requires registering all event types with property names and
classes, it is necessary to differentiate between events with only one property and events with
multiple properties (tuples) and also implement a way of identifying the types of properties and
tuple elements. We have accomplished this using the Scala Reflection API, more specifically
with the help of the recently introduced ClassTag and TypeTag constructs.

As soon as a new event is declared in CEScala, a correspondig event stream is created in
Esper. However, Esper’s API requires providing the classes of the event parameters but Scala’s
types are erased at compile-time (as with other JVM languages). To access type information at
runtime, ClassTags and TypeTags which carry the type information have to be explicitly
defined using context bounds, cf. line 1 of Listing 4.2. If the event parameter is a subtype of of
Product (i.e. it is a tuple), the classes of the parameter types are extracted from the tuple via
the TypeTag (lines 4–8). Otherwise, if the event parameter is not a subtype of Product, it
is assumed that it is a simple value, and its class is extracted via the ClassTag (line 11).

4.2 Reaction Binding

In contrast to EScala, it is not possible in Esper to bind reactions to event streams directly.
Instead, reactions have to be bound to EPStatements, standing Event Processing Language
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Listing 4.2: Using the Scala Reflection API to identify event parameter types

1 ImperativeEvent[T: ClassTag : TypeTag] extends EventNode[T] {
2 typeOf[T] match {
3 case t if t <:< typeOf[Product] => // Type is a tuple
4 val typeArgs = t match {
5 case TypeRef(_, _, args) => args
6 }
7 val m = runtimeMirror(getClass.getClassLoader)
8 val propertyTypes: Array[AnyRef] = typeArgs.map(t => m.

runtimeClass(t.typeSymbol.asClass)).toArray
9 CEPEngine.addEventType(name, propertyTypes)
10 case _ => // Type is not a tuple
11 val propertyTypes: Array[AnyRef] = Array(classTag[T].runtimeClass)
12 CEPEngine.addEventType(name, propertyTypes)
13 }
14 [...]
15 }

(EPL) queries which operate on event streams. Therefore, to bind a reaction to an event as it is
done in EScala, CEScala creates an EPStatement which selects all occurrences of an event
from the corresponding event stream, and then binds the reaction to this statement.

There are two different methods of binding reactions to EPStatements that are supported
by Esper: Reactions have to be wrapped either in an UpdateListener or in a subscriber
object. Although the Esper Reference favors using subscriber objects for better perfor-
mance, there is a remarkable disadvantage: Contrary to UpdateListeners, subscriber
objects must provide update methods with signatures that match the number and the types of
the properties of the underlying event [10]. Creating subscriber objects with the proper
signatures in CEScala would require implementing interfaces at runtime.1

Furthermore, our performance tests show that using a subscriber object does not actually
improve the overall performance, cf. section 5.2. Hence, we have decided to go with the
simple and concise way, i.e. wrapping reactions in UpdateListeners. We present this
implementation in Listing 4.3. Esper properties are accessed by their name (which CEScala sets
according to the order of their declaration), cf. lines 7 and 9. Properties of events with more
than one property have to be converted to tuples before they can be forwarded to the reaction,
cf. line 10.

4.3 Transforming events

When events are transformed with the map operator, CEScala creates a reaction which performs
the transformation, attaches it to the EPStatement that selects all occurrences of the original
event, and inserts the transformed event into a new event stream. Then a new EPStatement
is created and all reactions to the mapped event are wrapped in UpdateListeners and
bound to the new statement.

1 An implementation could be based on cglib [19], a code generation library for Java.
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Listing 4.3: Wrapping reactions in UpdateListeners

1 def MyListener(react: T => Unit) = new UpdateListener {
2 override def update(newEvents: Array[EventBean], oldEvents: Array[

EventBean]) {
3 val event = newEvents(0)
4 event.getEventType.getPropertyNames match {
5 case p if p.length == 0 => react(Unit.asInstanceOf[T])
6 case p if p.length == 1 =>
7 react(event.get("P1").asInstanceOf[T])
8 case p =>
9 val properties = for (propertyName <- p) yield event.get(

propertyName)
10 react(CEPEngine.toTuple(properties).asInstanceOf[T])
11 }
12 }
13 }

Listing 4.4: Composing events

1 CEPEngine.createEPL("insert istream into " + name + " select * from " +
ev1.name)

2 CEPEngine.createEPL("insert istream into " + name + " select * from " +
ev2.name)

3

4 val statement = CEPEngine.createEPL("select istream * from " + name)

4.4 Composing events

When events are composed with the || operator, CEScala infers the least common supertype
of the composed events and creates a corresponding event stream in Esper. Then CEScala
inserts both events into the new (merged) event stream, creates a new EPStatement and all
reactions to the composed event are wrapped in UpdateListeners and bound to the new
statement.

In Listing 4.4 we show how we insert both event streams ev1 and ev2 into a new event
stream name using Esper’s query language (lines 1-2) and then create an EPStatement se-
lecting all occurrences of the new event (line 4).

4.5 Joining events

When events are joined with the join operator, CEScala uses Esper to join the corresponding
event streams. To construct the condition String which is passed to Esper we implicitly
convert an Event to a ValueEventExpr or a TupleEventExpr, depending on the type
of the event. Those classes then provide methods to denote the corresponding event properties
and create boolean expressions (represented by instances of the class BoolExpr). Afterwards,
those expressions are converted to String representations and passed on to Esper.
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The properties of both events are inserted into the new (joined) event stream in Esper.
Then a new EPStatement is created and all reactions to the joined event are wrapped in
UpdateListeners that combine the properties of both events to a tuple of the combined
length. Afterwards, the UpdateListeners are attached to the new statement. To abstract
over tuple arities and statically support tuple manipulation we use shapeless [20]—a “type class
and dependent type based generic programming library for Scala”.

4.6 Using the Repeat Event Pattern

Another concept of Esper are event patterns. Event patterns match when an event or multiple
events occur that match the pattern’s definition. Patterns can also be time-based [10]. As an
example of such patterns we have implemented the repeat operator (which is translated to
repeat every in Esper).

The Repeat Event in CEScala creates a new EPStatement of the form select
istream e[0], e[1], e[2] from pattern[every [3] e=eventname] for a
ev1 repeat 3 event expression where ev1 denotes the event on which the pattern is ap-
plied, e[i] denotes the (i-1)th occurrence of the event, and eventname denotes the internal
name of the event stream represented by ev1.

The reactions to the Repeat Event are wrapped in UpdateListeners which receive the
Array of events from Esper and transform it to a Seq of event properties which can be parsed
by the reactions. Then the UpdateListeners are attached to the above statement.
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5 Evaluation

While evaluating event processing libraries two different metrics can be analyzed. One is the
feature-completeness of the library (“Which types of operations does it support?”), the other
one is its performance (“How much time does it take to trigger one million events?”). In this
section, we look at both of these metrics and thus provide an assessment of CEScala.

5.1 Feature Characteristics

In CEScala we have re-implemented the features of EScala using Esper and also added new event
expressions using a subset of Esper’s functionality. Those additional expressions include the
join and the repeat operators. The implementation is designed to be extended, therefore it
is simple to add new operators.

Since Esper relies heavily on its SQL-like event processing language, mapping it to an object-
oriented interface proves to be rather difficult. Similar approaches in Java for SQL (Hibernate
and JPA) were designed to provide the maximum functionality and expressiveness of querying
databases within the constraints of the Java language—they do not provide the ability to use a
single programming language and an object-oriented interface to access the underlying engine’s
features, as CEScala does. Instead, they escape the language with a String-based query language
where their imperative APIs are not sufficient [18].

Similar to other language-integrated query implementations (cf. section 2.3), CEScala pro-
vides an object-oriented interface and allows the developer to use a single programming lan-
guage. This enables the Scala compiler to check queries for well-formedness and thus leads to
more intuitive programming, better integration in IDEs, and an improved readability of code.

Although the interface of CEScala is based on EScala, they do not always behave exactly the
same. Particularly, the || operator behaves differently: When both events match an occurrence,
the occurrence is selected only once in the composed event using EScala. Using CEScala how-
ever, both event occurrences are selected. The reason for these different behaviours lies in the
way event compositions are handled by CEScala: Contrary to EScala, CEScala does does not
keep track of event composition or transformation. Hence, when two different events streams
originate from a single stream and are composed again later on, CEScala does not know about
their shared origin and therefore inserts both events into the new stream. Listing 5.1 shows an
example of this difference.

Another problem arises when events have too many properties: Tuples in Scala are technically
limited to contain a maximum of 22 elements. Therefore, it is not possible to declare events with
more than 22 properties.1 By extension this also applies to event joining: it is impossible to join
events with a combined number of properties that exceeds 22—in this case the program does not
compile. A workaround is reducing the number of selected properties using the map operator
before performing the join.

1 This is a limitation that is also shared by other Scala libraries; e.g. at the time of this writing Slick which is part
of the Typesafe Stack does not allow the querying of databases with tables that have more than 22 columns, cf.
https://issues.scala-lang.org/browse/SI-7099.
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Listing 5.1: Difference between EScala and CEScala regarding the || operator

1 var test = 0
2 val ev1 = new ImperativeEvent[Int]
3 val ev2 = ev1 && true
4 val ev3 = ev1 && true
5 val e4 = ev2 || ev3
6 val r1 = (e: Int) => test += e
7 e4 += r1
8 ev1(1)
9 ev1(2)
10 println(test) // equals 3 with EScala events but
11 // 6 with CEScala events

5.2 Benchmarking CEScala

In the following sections we describe how we measure the performances of the relevant libraries
regarding the test setup and present the test result and our interpretation thereof.

5.2.1 Experimental Methodology

To assess the performance of CEScala, we have conceived several tests. All tests measure the
time (in milliseconds) spent for the execution of the test. The measurements were conducted
on a desktop computer with an i7-4770K processor (clocked at 4.5 GHz) and 16GB of memory.
Libraries included in the comparison are:

• EScala

• EsperSubscriber—Esper executed directly, with reactions attached via subscriber ob-
jects

• EsperListener—Esper executed directly, with reactions attached via UpdateListeners

• CEScalaSeparate—our integration of EScala and Esper with separate event streams

• CEScalaMerged—our integration of EScala and Esper with merged event streams

For performing the measurements we have implemented our own testing routine that takes
care of executing the tests in separate VMs, warming up the VMs, running the measurements
multiple times, and aggregating the results. As the key performance indicator we calculate the
average of 36 measurements including confidence intervals. This procedure corresponds to the
recommended way of testing the performance of Java applications [21].

The first test creates n different events, attaches to each of them a reaction, and triggers
each event 100 times. The second test creates 100 different events, attaches to each of them
a reaction, and triggers each event n times. Both tests are run in two variants, using only one
event property and using two event properties, and in four different scenarios: n = 100, n =
200, n = 400, and n = 800.
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5.2.2 Results

We show the outcomes of the tests in Tables 5.1, 5.2, 5.3, and 5.4. We plot them in Figures 5.1,
5.2, 5.3, and 5.4.

The differences between the performances of the tests with one event property and two event
properties are negligible for EScala and both Esper implementations. However, CEScalaSeparate
and CEScalaMerged perform slightly slower in the tests with two event properties. The reason
for these results is the overhead of converting event properties to tuples in CEScala which is not
needed with only one event property.

The performances of all tested libraries scale proportionally to the number of total event
occurrences (the number of events multiplied with the number of times each event is triggered),
with minor deviations.

EScala clearly outperforms all other implementations in all tests and all test scenarios by a
great margin. It is about 50–100 times faster than CEScala or EsperListener, and the perfor-
mance gap is widening with a growing number of events.

EsperSubscriber and EsperListener are performance-wise very close contenders. Usually Es-
perListener outperforms EsperSubscriber marginally.2 This has encouraged us to use Esper’s
UpdateListeners instead of its subscriber objects in the implementation of CEScala.

CEScalaSeparate is very close to EsperListener. In some cases CEScalaSeparate even performs
slightly faster than EsperListener, this requires further investigation.

Comparing CEScalaSeparate with CEScalaMerged shows that, contrary to our speculation
in section 4.1, merging CEScala events to fewer Esper event streams does not improve the
performance but instead costs a penalty which increases with a growing number of events.
Therefore, we have chosen CEScalaSeparate as our primary implementation.

The most important benchmark for CEScala is the comparison to EsperListener, because this
is the comparison that a software developer who needs CEP in his application will make. Here
we expected a worse performance because CEScala adds another layer of abstraction to Esper
but instead we have observed only negligible differences. Due to the benefits of CEScala over
Esper regarding language-level integration we consider this a justifiable trade-off.

2 This is only true in a Scala environment. Results can differ in a Java environment.
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100 events 200 events 400 events 800 events

EScala 0.445 ± 0.012 0.726 ± 0.009 1.352 ± 0.024 2.692 ± 0.034
EsperSubscriber 25.889 ± 0.176 47.394 ± 0.262 93.228 ± 0.436 239.468 ± 3.814

EsperListener 24.705 ± 0.201 45.011 ± 0.343 87.946 ± 0.417 228.604 ± 3.231
CEScalaSeparate 24.97 ± 0.165 49.216 ± 0.173 97.042 ± 0.349 214.793 ± 2.803
CEScalaMerged 31.827 ± 0.176 62.266 ± 0.303 124.7 ± 0.696 308.173 ± 11.44

Table 5.1: Performances of n events having one property triggered 100 times
(with 95% confidence intervals)

100 events 200 events 400 events 800 events

EScala 0.452 ± 0.003 0.744 ± 0.008 1.41 ± 0.027 2.842 ± 0.037
EsperSubscriber 24.796 ± 0.224 45.203 ± 0.201 89.325 ± 0.371 221.807 ± 2.888

EsperListener 23.488 ± 0.15 43.09 ± 0.259 84.403 ± 0.396 206.914 ± 4.557
CEScalaSeparate 31.696 ± 0.282 58.789 ± 0.392 116.497 ± 1.856 229.514 ± 0.876
CEScalaMerged 38.531 ± 0.238 72.445 ± 0.305 144.386 ± 0.627 468.173 ± 3.017

Table 5.2: Performances of n events having two properties triggered 100 times
(with 95% confidence intervals)

100 times 200 times 400 times 800 times

EScala 0.457 ± 0.025 0.775 ± 0.01 1.52 ± 0.025 2.898 ± 0.036
EsperSubscriber 25.894 ± 0.212 33.862 ± 0.243 57.054 ± 0.264 112.191 ± 0.533

EsperListener 24.447 ± 0.187 33.074 ± 0.161 56.92 ± 0.315 113.34 ± 1.659
CEScalaSeparate 24.93 ± 0.137 33.781 ± 0.114 51.46 ± 0.301 87.192 ± 0.496
CEScalaMerged 31.897 ± 0.11 42.6 ± 0.246 64.121 ± 0.293 108.643 ± 0.624

Table 5.3: Performances of 100 events having one property triggered n times
(with 95% confidence intervals)

100 times 200 times 400 times 800 times

EScala 0.457 ± 0.006 0.819 ± 0.017 1.56 ± 0.024 2.972 ± 0.033
EsperSubscriber 24.962 ± 0.227 32.696 ± 0.174 56.185 ± 0.213 112.581 ± 0.953

EsperListener 23.496 ± 0.178 32.319 ± 0.13 57.272 ± 0.746 114.536 ± 0.603
CEScalaSeparate 31.719 ± 0.153 41.376 ± 0.21 64.851 ± 0.371 111.282 ± 0.642
CEScalaMerged 38.638 ± 0.312 51.026 ± 0.256 80.279 ± 0.429 139.71 ± 0.537

Table 5.4: Performances of 100 events having two properties triggered n times
(with 95% confidence intervals)
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Figure 5.1: Performances of n events having one property triggered 100 times
(with 95% confidence intervals)
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Figure 5.2: Performances of n events having two properties triggered 100 times
(with 95% confidence intervals)
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Figure 5.3: Performances of 100 events having one property triggered n times
(with 95% confidence intervals)
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Figure 5.4: Performances of 100 events having two properties triggered n times
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6 Conclusion

We have designed and provided a type-safe implementation of CEScala, a new DSL that is based
on EScala and Esper. It combines the concept of imperative events found in OO designs with the
expressivity that is characteristic of complex event processing libraries. In our implementation
we provide a representative subset of Esper’s functionality.

The performance of CEScala is almost equal to that of Esper, this means that our DSL adds
only a negligible performance overhead.

However, CEScala is much slower than EScala and hence it is reasonable to use EScala instead
of CEScala in applications that do not need the enhanced expressivity of CEP and in which
performance plays a major role.

6.1 Future Work

Currently, CEScala only supports a subset of the features provided by Esper. Future work in-
cludes adding more operators to CEScala and thus completing the current design. Moreover,
CEScala could easily be extended to support the AOP features introduced by EScala. Combining
implicit events aka join points with CEP could lead to the emergence of interesting new design
paradigms.

Another area of work is the support of named event properties. At present, event properties
are declared using tuple types and are therefore accessed using the order of their declaration.
For events with many properties it is favorable to use property names instead. The implemen-
tation could make use of a data structure from the Scala shapeless library—a Record. This
construct is similar to a Map but contains heterogeneous data types.

21





References

[1] P. Eugster and K. R. Jayaram, “EventJava: An Extension of Java for Event Correlation”, in
ECOOP 2009 – Object-Oriented Programming: 23rd European Conference, Genoa, Italy, July
6-10, 2009. Proceedings, S. Drossopoulou, Ed., ser. Lecture Notes in Computer Science,
vol. 5653, Springer, 2009, pp. 570–594.

[2] V. Gasiunas, L. Satabin, M. Mezini, A. Núñez, and J. Noyé, “EScala: Modular Event-
Driven Object Interactions in Scala”, in Proceedings of the tenth international conference
on Aspect-oriented software development, ser. AOSD ’11, Porto de Galinhas, Brazil: ACM,
2011, pp. 227–240.

[3] C. Janiesch, M. Matzner, and O. Müller, “A Blueprint for Event-Driven Business Activity
Management”, in Business Process Management: 9th International Conference, BPM 2011,
Clermont-Ferrand, France, August 30 - September 2, 2011. Proceedings, S. Rinderle-Ma, F.
Toumani, and K. Wolf, Eds., ser. Lecture Notes in Computer Science, vol. 6896, Springer,
2011, pp. 17–28.

[4] G. Cugola and A. Margara, “Processing Flows of Information: From Data Stream to Com-
plex Event Processing”, ACM Comput. Surv., vol. 44, no. 3, Jun. 2012.

[5] B. Peer, P. Rajbhoj, and N. Chathanur, “Complex Events Processing: Unburdening Big Data
Complexities”, Infosys Labs Briefings, vol. 11, no. 1, pp. 53–64, 2013.

[6] T. Wormus, “Analytics and Complex Event Processing: Adding Intelligence to the Event
Chain”, Business Intelligence Journal, vol. 13, no. 4, pp. 53–58, 2008.

[7] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M. White, “Cayuga:
A General Purpose Event Monitoring System”, in CIDR 2007, Third Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 7-10, 2007, Online Proceed-
ings, www.cidrdb.org, 2007, pp. 412–422.

[8] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, and S. B. Zdonik, “Aurora: a new model and architecture for data stream
management”, The VLDB Journal, vol. 12, no. 2, pp. 120–139, Aug. 2003.

[9] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang, W. Lind-
ner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik, “The Design of
the Borealis Stream Processing Engine”, in CIDR 2005, Second Biennial Conference on In-
novative Data Systems Research, Asilomar, CA, USA, January 4-7, 2005, Online Proceedings,
vol. 5, www.cidrdb.org, 2005, pp. 277–289.

[10] Esper Reference. [Online]. Available: http://esper.codehaus.org/esper-
4.9.0/doc/reference/en-US/pdf/esper_reference.pdf.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An
Overview of AspectJ”, in ECOOP 2001 – Object-Oriented Programming: 15th European
Conference, Budapest, Hungary, June 18-22, 2001, Proceedings, J. L. Knudsen, Ed., ser.
Lecture Notes in Computer Science, vol. 2072, Springer, 2001, pp. 327–354.

23

http://esper.codehaus.org/esper-4.9.0/doc/reference/en-US/pdf/esper_reference.pdf
http://esper.codehaus.org/esper-4.9.0/doc/reference/en-US/pdf/esper_reference.pdf


[12] H. Rajan and G. T. Leavens, “Ptolemy: A Language with Quantified, Typed Events”, in
ECOOP 2008 – Object-Oriented Programming: 22nd European Conference Paphos, Cyprus,
July 7-11, 2008 Proceedings, J. Vitek, Ed., ser. Lecture Notes in Computer Science,
vol. 5142, Springer, Jul. 2008, pp. 155–179.

[13] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The Many Faces of Pub-
lish/Subscribe”, ACM Comput. Surv., vol. 35, no. 2, pp. 114–131, Jun. 2003.

[14] S. Suhothayan, K. Gajasinghe, I. Loku Narangoda, S. Chaturanga, S. Perera, and V.
Nanayakkara, “Siddhi: A second Look at Complex Event Processing Architectures”, in
Proceedings of the 2011 ACM workshop on Gateway computing environments, ser. GCE ’11,
Seattle, Washington, USA: ACM, 2011, pp. 43–50.

[15] L. J. Fülöp, G. Tóth, R. Rácz, J. Pánczél, T. Gergely, A. Beszédes, and L. Farkas, “Survey
on complex event processing and predictive analytics”, 2010.

[16] D. Spiewak and T. Zhao, “ScalaQL: Language-Integrated Database Queries for Scala”, in
Software Language Engineering: Second International Conference, SLE 2009, Denver, CO,
USA, October 5-6, 2009, Revised Selected Papers, M. G. J. van den Brand, D. Gasevic,
and J. G. Gray, Eds., ser. Lecture Notes in Computer Science, vol. 5969, Springer, 2009,
pp. 154–163.

[17] M. Garcia, A. Izmaylova, and S. Schupp, “Extending Scala with Database Query Capabil-
ity”, Journal of Object Technology, vol. 9, no. 4, pp. 45–68, Jul. 2010.

[18] An Introduction to Squeryl - A Scala ORM for SQL Databases. [Online]. Available: http:
//squeryl.org/introduction.html.

[19] cglib: a powerful, high performance and quality Code Generation Library. [Online]. Avail-
able: http://cglib.sourceforge.net.

[20] shapeless - An exploration of generic/polytypic programming in Scala. [Online]. Available:
https://github.com/milessabin/shapeless.

[21] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically Rigorous Java Performance Evalu-
ation”, in Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems and applications, ser. OOPSLA ’07, Montreal, Quebec, Canada: ACM,
2007, pp. 57–76.

24

http://squeryl.org/introduction.html
http://squeryl.org/introduction.html
http://cglib.sourceforge.net
https://github.com/milessabin/shapeless

	Introduction
	State of the Art
	Event Processing and Event-based Languages
	Complex Event Processing Systems
	Language-integrated Query

	The CEScala Library
	The EScala DSL in a nutshell
	Event Declaration
	Binding Reactions to Events
	Event Expression Language

	Extending EScala—The CEScala DSL
	join
	repeat


	Implementation
	Event Representation
	Mapping Events to Esper
	Merged Event Streams
	Handling Events with Multiple Properties

	Reaction Binding
	Transforming events
	Composing events
	Joining events
	Using the Repeat Event Pattern

	Evaluation
	Feature Characteristics
	Benchmarking CEScala
	Experimental Methodology
	Results


	Conclusion
	Future Work

	References

