ROMPLEX EVENT PROC
LANGUAGE-LEVEL INTEGRATIO

-SSING:

N N

Bachelor thesis by Mark Goldenstein

Software lechnology Group

Fachbereich Informatik
T EErmnstaait

O SCALA

DEFINITIONS

Event Processing
s a method of tracking and analyzing (processing)

streams of information (data)

about things that happen (events).

Complex Event Processing (CEP)

s event processing that

combines multiple sources of simple events to
higher-level and more abstract complex events.

Event Sources

Exchange Data
(Nasdagq, ...)

FAANMPLE OFCES
Al THE STOCK MARKET

Fvent Query

* the share price of a company is going

Analyst Reports

up for 10 consecutive seconds AND

* an analyst has upgraded the company
to a buy within the last minute

Complex

Event

initiating a
trade
could be
profitable

Reaction

place a
buy order

ERARACTERISTICS OF CEl

» Events should be processed as fast as possible.

- [raditional databases are not applicable because

» data has to be stored and indexed

* processing only occurs when explicitly asked,
.e. asynchronously with respect to 1ts arrival.

» CEP requires systems that were specifically designed to
process Information as a flow.

4

Al E OF [HE A

Which tools do we have to work with events!?

Programming Languages

@O
» Observer Pattern (Java)

* Events as Object Attributes (C#)

S W spect])
* Implicit Events
* Declarative Join Points

BNIPECT (e above (Locala, Ptolemy)

5

Al E OF [HE A

Which tools do we have to work with events!?

CEP Libraries

» Stream Processing systems (Aurora, Borealis)
* Full CEP systems (Esper, Cayuga)

» Usually an SQL-like AP| (with custom extensions)

Al E OF [HE A

VWhich tools do we have to work with events!?

Programming CEP
Languages Libraries
compller checked SQL-like API

GOAL: Language-level integration for CEP

GOAL: Language-level integration for CEP

INTRODUCING CESCALA

Design Characteristics
@IEc4a should ...

» provide the expressivity of CEP libraries

» provide the level of language integration for event
processing offered by event-based languages

INTRODUCING CESCALA

API Implementation
c |\ EiTERN
el
63\/

— T

9

new stuff

it CESCALA TS

based on EScala

Declaring an Event
one property

val el = new ImperativeEvent[Int] '

multiple properties
val e2 = new ImperativeEvent[(Int, String)]

it CESCALA TS

based on EScala

val e2 = new ImperativeEvent[(Int, String)]

Declaring a Reaction
val r2 = (e: (Int, String)) => println(e._2)

Binding a Reaction to an Event

e2 += r2 '

it CESCALA TS

based on EScala

val e2 = new ImperativeEvent[(Int, String)]

Triggering an Event
e2(42, “Hello World!"”)

it CESCALA TS

based on EScala

val e2 = new ImperativeEvent[(Int, String)]

Transforming an Event

val e3 = e2.map((e: (Int, String)) => (e._1, e._2.length))

it CESCALA TS

based on EScala

val e2 = new ImperativeEvent[(Int, String)]

Filtering an Event

val predicate = (int: Int, string: String) => int == 42
val e4 = e2 && predicate

it CESCALA TS

based on EScala

val el = new ImperativeEvent[(Int, String)]
val e2 = new ImperativeEvent[(Int, String)]

Composing Events

val e3 = el || e2 '

it CESCALA O

new features

val e

1 = new ImperativeEvent[(Int, String)
val e2 n

]
ew ImperativeEvent[(Int, String)]

Joining Events

val e3 = el join e2 window time(30 sec) on ((a,b) => a._1===b._ 1)

Creating a Reaction to a Joined Event

val r3 = (e: (Int, String, Int, String)) =>
println(e. 2 + “ “ + e._4)
e3 += r3

it CESCALA O

new features

val el = new ImperativeEvent[(Int, String)]

Creating a Repeat Event Pattern

val e4 = el repeat 3 '

Creating a Reaction to a Repeat Event Pattern

val r4 = (e: Seql[[(Int, String)]) =>
println(e(0). 2 + “ “ + e(1).. 2 + “ “ + e(2)._2)
ed += r4

it CESCALA TS

Custom lypes are supported.

class CustomEventType(val int: Int, val string: String) {

override def equals(o: Any) = o match {
case 0: IntString => int == o.int && string == o.string
case _ => false

¥

override def hashCode = string.hashCode + int

IMPLEMEN TATION
B TAILS Or CESCATS

makes use of gcala Reflection and Scala shapeless

LD s B

to map from CEScala’'s APl to Esper

val el = new ImperativeEvent[(Int, String)]

i Tieec 0 extract Int and String and pass themtONESEE

ImperativeEvent [T: ClassTag : TypeTag] extends EventNode[T] {
typeOf[T] match {
case t if t <:< typeOf[Product] => // Type is a tuple
[...]

case => // Type 1is not a tuple

makes use of Scala Reflection and Scala shar
to map from CEScala’'s APl to Esper |

val el
val e2
val e3
val r3
e3 += r

w Il I 1

IMPLEMEN TATION
B TAILS Or CESCATS

new ImperativeEvent[(Int, String)]
new ImperativeEvent[(Int, String)]
el join e2 window time(30 sec) on ((a,b) => a._1===b. 1)

(e: (Int, String, Int, String)) => println(e._4)

20

IMPLEMEN TATION
B TAILS Or CESCATS

Design Parameters

* Should we map CEbScala
SISO SEpardie event
streams In Esper or merge
events of the same type to
a single stream?

2|

IMPLEMENTATION
DETAILS OF CESC S

Separate event streams

N

CEScala Esper
Stream 1 (Int) | Event[Int] | | Event[Int] |

ev, —» LS e e > ev, —» !

t+1 t+1

ev, —pf 2 1 > ev, — 12

t+3 143

t+4 t+4

t+5 t+5

Stream 2 (Int) | Event[int | Event[int
t t

ev, —» LA > ev, —» t+1

t+2 t+2

t+3 t+3

ev4 — 4 OIS > ev4 — t+4

t+5 45

Stream 3 (String)| [___Event[String] | [Event[String] |

t t

t+1 t+1

ev, t+2 I > ev, t+2

t+3 t+3

t+4 t+4

eV, — e > ev, — 2

IMPLEMENTATION
DETAILS OF CESC S

CEScala Esper
Stream 1 (Int) | Event[Int] | [Event[id=Int, Int] |
ev, —»—— ev, t
|
t+1 | t+1
: -—--—> eV, i
| 1
ev, t+2 1 _____e____ > ev, t+2
|
|13 i s
|
| |
|
t+4 | : —- > ev, t+4
|
t+5 : E : 45
-
| |
| Event[int] ' et B
¢ T e S - - - - - - -~
Lo
| |
Lo
|
ev, —» s
|
t+2 :
|
|
t+3 !
|
|
ev, —p—4 ____] iy
1+5
. ¥
Stream 2 (String)| |_Event[String] | | Event[id=Int, Strin
t t
t+1 t+1
ev, —p 2 > ev, — 2
t+3 t+3
t+4 t+4
ev, t45 R > ev t+5

IMPLEMEN TATION
B TAILS Or CESCATS

Design Parameters

» Should we map CEbScala * How do we attach
events to distinct event reactions to events! - Esper
streams In Esper or events of provides us with two
the same type to a single different options
stream!? (Updatelisteners and

Subscribers).

Solution
Implement all variants and compare the performances.

8

PERFORMANCE EVALUATION

How much time does each library need
to trigger 300 events |00 times!

Libraries included in the comparison:
* EScala

» CEScalaSeparate
» CEScalaMerged
* EsperSubscriber

BR= perlistener

Dl

PERFORMANCE EVALUATION

How much time does each library need
to trigger 800 events |00 times!

400 ms

300 ms

200 ms

o i I i I . I ‘

0 ms

EScala EsperSubscriber Esperlistener CEScalaSeparate CEScalaMerged
5

SUNMMARE

CEScala 1s a DSL which combines

» the level of language-integration of EScala with
» the expressivity of the CEP engine Esper

- at a negligible performance cost (compared to Esper).

26

