
COMPLEX EVENT PROCESSING:
LANGUAGE-LEVEL INTEGRATION INTO SCALA

Bachelor thesis by Mark Goldenstein	

!

Software Technology Group	

Fachbereich Informatik	

TU Darmstadt

DEFINITIONS
Event Processing	

 is a method of tracking and analyzing (processing)	

 streams of information (data)	

 about things that happen (events).

Complex Event Processing (CEP)	

 is event processing that	

 combines multiple sources of simple events to	

 higher-level and more abstract complex events.

���2

EXAMPLE OF CEP  
AT THE STOCK MARKET

Event Sources

Exchange Data 
(Nasdaq, …)

Analyst Reports

Event Query

• the share price of a company is going
up for 10 consecutive seconds AND  
!

• an analyst has upgraded the company
to a buy within the last minute

• the share price of a company is going
up for 10 consecutive seconds AND  
!

• an analyst has upgraded the company
to a buy within the last minute

Complex
Event

initiating a
trade
could be
profitable

initiating a
trade
could be
profitable

Reaction

place a 
buy order
place a 
buy order

���3

• Events should be processed as fast as possible.	

• Traditional databases are not applicable because	

• data has to be stored and indexed	

• processing only occurs when explicitly asked, 

i.e. asynchronously with respect to its arrival. 
 

• CEP requires systems that were specifically designed to
process information as a flow.

���4

CHARACTERISTICS OF CEP

STATE OF THE ART

• OOP
• Observer Pattern (Java)
• Events as Object Attributes (C#)

• AOP (AspectJ)
• Implicit Events
• Declarative Join Points

• Mix of the above (EScala, Ptolemy)

Which tools do we have to work with events?

Programming Languages

���5

STATE OF THE ART
Which tools do we have to work with events?

• Stream Processing systems (Aurora, Borealis)

• Full CEP systems (Esper, Cayuga)

• Usually an SQL-like API (with custom extensions)

CEP Libraries

���6

STATE OF THE ART
Which tools do we have to work with events?

compiler checked

Programming
Languages

CEP
Libraries
SQL-like API

GOAL: Language-level integration for CEP
���7

INTRODUCING CESCALA

• provide the expressivity of CEP libraries

• provide the level of language integration for event
processing offered by event-based languages

Design Characteristics
CEScala should ...

GOAL: Language-level integration for CEP

���8

INTRODUCING CESCALA

���9

API

EScala

CEScala

Implementation

new stuff

e1
e2

e3
e4

Esper

THE CESCALA DSL

Declaring an Event

val e1 = new ImperativeEvent[Int]

val e2 = new ImperativeEvent[(Int, String)]

one property

multiple properties

based on EScala

���10

Declaring a Reaction

THE CESCALA DSL

val e2 = new ImperativeEvent[(Int, String)]

val r2 = (e: (Int, String)) => println(e._2)

Binding a Reaction to an Event
e2 += r2

based on EScala

���11

Triggering an Event

THE CESCALA DSL

e2(42, “Hello World!”)

based on EScala

val e2 = new ImperativeEvent[(Int, String)]

���12

Transforming an Event

THE CESCALA DSL

val e3 = e2.map((e: (Int, String)) => (e._1, e._2.length))

based on EScala

val e2 = new ImperativeEvent[(Int, String)]

���13

Filtering an Event

THE CESCALA DSL

val predicate = (int: Int, string: String) => int == 42
val e4 = e2 && predicate

based on EScala

val e2 = new ImperativeEvent[(Int, String)]

���14

Composing Events

THE CESCALA DSL

val e3 = e1 || e2

based on EScala

val e1 = new ImperativeEvent[(Int, String)]
val e2 = new ImperativeEvent[(Int, String)]

���15

Joining Events

THE CESCALA DSL

val e3 = e1 join e2 window time(30 sec) on ((a,b) => a._1===b._1)

new features

val e1 = new ImperativeEvent[(Int, String)]
val e2 = new ImperativeEvent[(Int, String)]

Creating a Reaction to a Joined Event
val r3 = (e: (Int, String, Int, String)) =>
 println(e._2 + “ “ + e._4)
e3 += r3

���16

Creating a Repeat Event Pattern

THE CESCALA DSL

val e4 = e1 repeat 3

new features

val e1 = new ImperativeEvent[(Int, String)]

Creating a Reaction to a Repeat Event Pattern
val r4 = (e: Seq[[(Int, String)]) =>
 println(e(0)._2 + “ “ + e(1)._2 + “ “ + e(2)._2)
e4 += r4

���17

THE CESCALA DSL

���18

Custom Types are supported.
class CustomEventType(val int: Int, val string: String) {
!
 override def equals(o: Any) = o match {
 case o: IntString => int == o.int && string == o.string
 case _ => false
 }
!
 override def hashCode = string.hashCode + int
!
}

IMPLEMENTATION
DETAILS OF CESCALA

val e1 = new ImperativeEvent[(Int, String)]

makes use of Scala Reflection and Scala shapeless  
to map from CEScala’s API to Esper

We need to extract Int and String and pass them to Esper.
ImperativeEvent[T: ClassTag : TypeTag] extends EventNode[T] {
 typeOf[T] match {
 case t if t <:< typeOf[Product] => // Type is a tuple
 [...]
 case _ => // Type is not a tuple
 [...] }
 [...]
}

���19

makes use of Scala Reflection and Scala shapeless  
to map from CEScala’s API to Esper

IMPLEMENTATION
DETAILS OF CESCALA

val e1 = new ImperativeEvent[(Int, String)]
val e2 = new ImperativeEvent[(Int, String)]
val e3 = e1 join e2 window time(30 sec) on ((a,b) => a._1===b._1)
val r3 = (e: (Int, String, Int, String)) => println(e._4)
e3 += r3

���20

IMPLEMENTATION
DETAILS OF CESCALA

• Should we map CEScala
events to separate event
streams in Esper or merge
events of the same type to
a single stream?

Design Parameters

���21

IM
PL

EM
EN

TA
TI

O
N

D
ET

AI
LS

 O
F

CE
SC

AL
A

���22

Stream 1 (Int)
CEScala

ev1

ev2

ev3

ev4

ev5

ev6

Event[Int]
t

t+1

t+2

t+3

t+4

t+5

Event[Int]
t

t+1

t+2

t+3

t+4

t+5

Event[String]
t

t+1

t+2

t+3

t+4

t+5

Esper

ev6

ev5

ev2

ev1

Event[Int]
t

t+1

t+2

t+3

t+4

t+5

Event[String]
t

t+1

t+2

t+3

t+4

t+5

Event[Int]
t

t+1

t+2

t+3

t+4

t+5

ev4

ev3

Stream 2 (Int)

Stream 3 (String)

Separate event streams

Merged event streams
IM

PL
EM

EN
TA

TI
O

N

D
ET

AI
LS

 O
F

CE
SC

AL
A

���22

Stream 1 (Int)
CEScala

ev1

ev2

ev3

ev4

ev5

ev6

Event[Int]
t

t+1

t+2

t+3

t+4

t+5

Event[Int]
t

t+1

t+2

t+3

t+4

t+5

Event[String]
t

t+1

t+2

t+3

t+4

t+5

Esper

ev6

ev5

ev2

ev1

Event[Int]
t

t+1

t+2

t+3

t+4

t+5

Event[String]
t

t+1

t+2

t+3

t+4

t+5

ev4

ev3

Event[id=Int, Int]

Event[id=Int, String]Stream 2 (String)

IMPLEMENTATION
DETAILS OF CESCALA

• How do we attach
reactions to events? - Esper
provides us with two
different options
(UpdateListeners and
Subscribers).

Design Parameters

Solution
Implement all variants and compare the performances.

• Should we map CEScala
events to distinct event
streams in Esper or events of
the same type to a single
stream?

���23

PERFORMANCE EVALUATION

Libraries included in the comparison:
• EScala	

• CEScalaSeparate	

• CEScalaMerged	

• EsperSubscriber	

• EsperListener

���24

How much time does each library need	

to trigger 800 events 100 times?

PERFORMANCE EVALUATION

0 ms

100 ms

200 ms

300 ms

400 ms

EScala EsperSubscriber EsperListener CEScalaSeparate CEScalaMerged
���25

How much time does each library need	

to trigger 800 events 100 times?

SUMMARY

CEScala is a DSL which combines	

• the level of language-integration of EScala with	

• the expressivity of the CEP engine Esper	

• at a negligible performance cost (compared to Esper).

���26

