This repository has been archived by the owner on Jul 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmodel_util.py
143 lines (123 loc) · 4.61 KB
/
model_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright 2023 The medical_research_foundations Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Network architectures related functions used in SimCLR."""
from absl import flags
from . import resnet
import tensorflow.compat.v1 as tf
FLAGS = flags.FLAGS
def add_weight_decay(adjust_per_optimizer=True):
"""Compute weight decay from flags."""
if adjust_per_optimizer and 'lars' in FLAGS.optimizer:
# Weight decay are taking care of by optimizer for these cases.
return
l2_losses = [tf.nn.l2_loss(v) for v in tf.trainable_variables()
if 'batch_normalization' not in v.name]
tf.losses.add_loss(
FLAGS.weight_decay * tf.add_n(l2_losses),
tf.GraphKeys.REGULARIZATION_LOSSES)
def get_train_steps(num_examples):
"""Determine the number of training steps."""
return FLAGS.train_steps or (
num_examples * FLAGS.train_epochs // FLAGS.train_batch_size + 1)
def learning_rate_schedule(base_learning_rate, num_examples):
"""Build learning rate schedule."""
global_step = tf.train.get_or_create_global_step()
warmup_steps = int(round(
FLAGS.warmup_epochs * num_examples // FLAGS.train_batch_size))
scaled_lr = base_learning_rate * FLAGS.train_batch_size / 256.0
learning_rate = (tf.to_float(global_step) / int(warmup_steps) * scaled_lr
if warmup_steps else scaled_lr)
# Cosine decay learning rate schedule
total_steps = get_train_steps(num_examples)
learning_rate = tf.where(
global_step < warmup_steps, learning_rate,
tf.train.cosine_decay(
scaled_lr,
global_step - warmup_steps,
total_steps - warmup_steps))
return learning_rate
def linear_layer(x,
is_training,
num_classes,
use_bias=True,
use_bn=False,
name='linear_layer'):
"""Linear head for linear evaluation.
Args:
x: hidden state tensor of shape (bsz, dim).
is_training: boolean indicator for training or test.
num_classes: number of classes.
use_bias: whether or not to use bias.
use_bn: whether or not to use BN for output units.
name: the name for variable scope.
Returns:
logits of shape (bsz, num_classes)
"""
assert x.shape.ndims == 2, x.shape
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
x = tf.layers.dense(
inputs=x,
units=num_classes,
use_bias=use_bias and not use_bn,
kernel_initializer=tf.random_normal_initializer(stddev=.01))
if use_bn:
x = resnet.batch_norm_relu(x, is_training, relu=False, center=use_bias)
x = tf.identity(x, '%s_out' % name)
return x
def projection_head(hiddens, is_training, name='head_contrastive'):
"""Head for projecting hiddens fo contrastive loss."""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
if FLAGS.head_proj_mode == 'none':
pass # directly use the output hiddens as hiddens
elif FLAGS.head_proj_mode == 'linear':
hiddens = linear_layer(
hiddens,
is_training,
FLAGS.head_proj_dim,
use_bias=False,
use_bn=True,
name='l_0',
)
elif FLAGS.head_proj_mode == 'nonlinear':
hiddens = linear_layer(
hiddens,
is_training,
hiddens.shape[-1],
use_bias=True,
use_bn=True,
name='nl_0',
)
for j in range(1, FLAGS.num_nlh_layers + 1):
hiddens = tf.nn.relu(hiddens)
hiddens = linear_layer(
hiddens,
is_training,
FLAGS.head_proj_dim,
use_bias=False,
use_bn=True,
name='nl_%d' % j,
)
else:
raise ValueError(
'Unknown head projection mode {}'.format(FLAGS.head_proj_mode)
)
return hiddens
def supervised_head(hiddens, num_classes, is_training, name='head_supervised'):
"""Add supervised head & also add its variables to inblock collection."""
with tf.variable_scope(name):
logits = linear_layer(hiddens, is_training, num_classes)
for var in tf.trainable_variables():
if var.name.startswith(name):
tf.add_to_collection('trainable_variables_inblock_5', var)
return logits