This repository has been archived by the owner on Jul 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathresnet.py
813 lines (710 loc) · 28.7 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
# Copyright 2023 The medical_research_foundations Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions for the post-activation form of Residual Networks.
Residual networks (ResNets) were proposed in:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
"""
from typing import Callable, Dict, Optional, Tuple
from absl import flags
from . import bit
import tensorflow.compat.v1 as tf
import typing_extensions
# pylint:disable=g-direct-tensorflow-import
from tensorflow.python.tpu import tpu_function
# pylint:enable=g-direct-tensorflow-import
FLAGS = flags.FLAGS
BATCH_NORM_EPSILON = 1e-5
class BlockFn(typing_extensions.Protocol):
"""Typing for block functions."""
def __call__(
self,
inputs: tf.Tensor,
filters: int,
is_training: bool,
strides: int,
use_projection: bool = False,
data_format: str = 'channels_first',
dropblock_keep_prob: Optional[Tuple[float, float, float, float]] = None,
dropblock_size: Optional[int] = None,
global_bn: bool = True,
batch_norm_decay: float = 0.9,
) -> tf.Tensor:
pass
class BatchNormalization(tf.layers.BatchNormalization):
"""Batch Normalization layer that supports cross replica computation on TPU.
This class extends the keras.BatchNormalization implementation by supporting
cross replica means and variances. The base class implementation only computes
moments based on mini-batch per replica (TPU core).
For detailed information of arguments and implementation, refer to:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization
"""
def __init__(self, fused=False, **kwargs):
"""Builds the batch normalization layer.
Arguments:
fused: If `False`, use the system recommended implementation. Only support
`False` in the current implementation.
**kwargs: input augments that are forwarded to
tf.layers.BatchNormalization.
"""
if fused in (True, None):
raise ValueError('The TPU version of BatchNormalization does not support '
'fused=True.')
super(BatchNormalization, self).__init__(fused=fused, **kwargs)
def _cross_replica_average(self, t):
"""Calculates the average value of input tensor across TPU replicas."""
num_shards = tpu_function.get_tpu_context().number_of_shards
return tf.tpu.cross_replica_sum(t) / tf.cast(num_shards, t.dtype)
def _moments(self, inputs, reduction_axes, keep_dims, mask=None):
"""Compute the mean and variance: it overrides the original _moments."""
shard_mean, shard_variance = super(BatchNormalization, self)._moments(
inputs, reduction_axes, keep_dims=keep_dims, mask=mask)
num_shards = tpu_function.get_tpu_context().number_of_shards
if num_shards and num_shards > 1:
# Each group has multiple replicas: here we compute group mean/variance by
# aggregating per-replica mean/variance.
group_mean = self._cross_replica_average(shard_mean)
group_variance = self._cross_replica_average(shard_variance)
# Group variance needs to also include the difference between shard_mean
# and group_mean.
mean_distance = tf.square(group_mean - shard_mean)
group_variance += self._cross_replica_average(mean_distance)
return (group_mean, group_variance)
else:
return (shard_mean, shard_variance)
def batch_norm_relu(
inputs,
is_training,
relu=True,
init_zero=False,
center=True,
scale=True,
data_format='channels_first',
global_bn=True,
batch_norm_decay=0.9,
):
"""Performs a batch normalization followed by a ReLU.
Args:
inputs: `Tensor` of shape `[batch, channels, ...]`.
is_training: `bool` for whether the model is training.
relu: `bool` if False, omits the ReLU operation.
init_zero: `bool` if True, initializes scale parameter of batch
normalization with 0 instead of 1 (default).
center: `bool` whether to add learnable bias factor.
scale: `bool` whether to add learnable scaling factor.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
global_bn: `bool` whether to aggregate BN statistics across distributed
cores.
batch_norm_decay: `float` batch norm decay parameter.
Returns:
A normalized `Tensor` with the same `data_format`.
"""
if init_zero:
gamma_initializer = tf.zeros_initializer()
else:
gamma_initializer = tf.ones_initializer()
if data_format == 'channels_first':
axis = 1
else:
axis = 3
if global_bn:
bn_foo = BatchNormalization(
axis=axis,
momentum=batch_norm_decay,
epsilon=BATCH_NORM_EPSILON,
center=center,
scale=scale,
fused=False,
gamma_initializer=gamma_initializer,
)
inputs = bn_foo(inputs, training=is_training)
else:
inputs = tf.layers.batch_normalization(
inputs=inputs,
axis=axis,
momentum=batch_norm_decay,
epsilon=BATCH_NORM_EPSILON,
center=center,
scale=scale,
training=is_training,
fused=True,
gamma_initializer=gamma_initializer,
)
if relu:
inputs = tf.nn.relu(inputs)
return inputs
def dropblock(
net, is_training, keep_prob, dropblock_size, data_format='channels_first'
):
"""DropBlock: a regularization method for convolutional neural networks.
DropBlock is a form of structured dropout, where units in a contiguous
region of a feature map are dropped together. DropBlock works better than
dropout on convolutional layers due to the fact that activation units in
convolutional layers are spatially correlated.
See https://arxiv.org/pdf/1810.12890.pdf for details.
Args:
net: `Tensor` input tensor.
is_training: `bool` for whether the model is training.
keep_prob: `float` or `Tensor` keep_prob parameter of DropBlock. "None"
means no DropBlock.
dropblock_size: `int` size of blocks to be dropped by DropBlock.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
A version of input tensor with DropBlock applied.
Raises:
if width and height of the input tensor are not equal.
"""
if not is_training or keep_prob is None:
return net
tf.logging.info('Applying DropBlock: dropblock_size {}, net.shape {}'.format(
dropblock_size, net.shape))
if data_format == 'channels_last':
_, width, height, _ = net.get_shape().as_list()
else:
_, _, width, height = net.get_shape().as_list()
if width != height:
raise ValueError('Input tensor with width!=height is not supported.')
dropblock_size = min(dropblock_size, width)
# seed_drop_rate is the gamma parameter of DropBlcok.
seed_drop_rate = (1.0 - keep_prob) * width**2 / dropblock_size**2 / (
width - dropblock_size + 1)**2
# Forces the block to be inside the feature map.
w_i, h_i = tf.meshgrid(tf.range(width), tf.range(width))
valid_block_center = tf.logical_and(
tf.logical_and(w_i >= int(dropblock_size // 2),
w_i < width - (dropblock_size - 1) // 2),
tf.logical_and(h_i >= int(dropblock_size // 2),
h_i < width - (dropblock_size - 1) // 2))
valid_block_center = tf.expand_dims(valid_block_center, 0)
valid_block_center = tf.expand_dims(
valid_block_center, -1 if data_format == 'channels_last' else 0)
randnoise = tf.random_uniform(net.shape, dtype=tf.float32)
block_pattern = (1 - tf.cast(valid_block_center, dtype=tf.float32) + tf.cast(
(1 - seed_drop_rate), dtype=tf.float32) + randnoise) >= 1
block_pattern = tf.cast(block_pattern, dtype=tf.float32)
if dropblock_size == width:
block_pattern = tf.reduce_min(
block_pattern,
axis=[1, 2] if data_format == 'channels_last' else [2, 3],
keepdims=True)
else:
if data_format == 'channels_last':
ksize = [1, dropblock_size, dropblock_size, 1]
else:
ksize = [1, 1, dropblock_size, dropblock_size]
block_pattern = -tf.nn.max_pool(
-block_pattern, ksize=ksize, strides=[1, 1, 1, 1], padding='SAME',
data_format='NHWC' if data_format == 'channels_last' else 'NCHW')
percent_ones = tf.cast(tf.reduce_sum((block_pattern)), tf.float32) / tf.cast(
tf.size(block_pattern), tf.float32)
net = net / tf.cast(percent_ones, net.dtype) * tf.cast(
block_pattern, net.dtype)
return net
def fixed_padding(inputs, kernel_size, data_format='channels_first'):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]` or `[batch,
height, width, channels]` depending on `data_format`.
kernel_size: `int` kernel size to be used for `conv2d` or max_pool2d`
operations. Should be a positive integer.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
A padded `Tensor` of the same `data_format` with size either intact
(if `kernel_size == 1`) or padded (if `kernel_size > 1`).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if data_format == 'channels_first':
padded_inputs = tf.pad(inputs, [[0, 0], [0, 0],
[pad_beg, pad_end], [pad_beg, pad_end]])
else:
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]])
return padded_inputs
def conv2d_fixed_padding(
inputs, filters, kernel_size, strides, data_format='channels_first'
):
"""Strided 2-D convolution with explicit padding.
The padding is consistent and is based only on `kernel_size`, not on the
dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
Args:
inputs: `Tensor` of size `[batch, channels, height_in, width_in]`.
filters: `int` number of filters in the convolution.
kernel_size: `int` size of the kernel to be used in the convolution.
strides: `int` strides of the convolution.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
Returns:
A `Tensor` of shape `[batch, filters, height_out, width_out]`.
"""
if strides > 1:
inputs = fixed_padding(inputs, kernel_size, data_format=data_format)
return tf.layers.conv2d(
inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(),
data_format=data_format)
def residual_block(
inputs,
filters,
is_training,
strides,
use_projection=False,
data_format='channels_first',
dropblock_keep_prob=None,
dropblock_size=None,
global_bn=True,
batch_norm_decay=0.9,
):
"""Standard building block for residual networks with BN after convolutions.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]`.
filters: `int` number of filters for the first two convolutions. Note that
the third and final convolution will use 4 times as many filters.
is_training: `bool` for whether the model is in training.
strides: `int` block stride. If greater than 1, this block will ultimately
downsample the input.
use_projection: `bool` for whether this block should use a projection
shortcut (versus the default identity shortcut). This is usually `True`
for the first block of a block group, which may change the number of
filters and the resolution.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
dropblock_keep_prob: unused; needed to give method same signature as other
blocks
dropblock_size: unused; needed to give method same signature as other
blocks.
global_bn: `bool` whether to aggregate BN statistics across distributed
cores.
batch_norm_decay: `float` batch norm decay parameter.
Returns:
The output `Tensor` of the block.
"""
del dropblock_keep_prob
del dropblock_size
shortcut = inputs
if use_projection:
# Projection shortcut in first layer to match filters and strides
shortcut = conv2d_fixed_padding(
inputs=inputs,
filters=filters,
kernel_size=1,
strides=strides,
data_format=data_format,
)
shortcut = batch_norm_relu(
shortcut,
is_training,
relu=False,
data_format=data_format,
global_bn=global_bn,
batch_norm_decay=batch_norm_decay,
)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm_relu(
inputs,
is_training,
data_format=data_format,
global_bn=global_bn,
batch_norm_decay=batch_norm_decay,
)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=1,
data_format=data_format)
inputs = batch_norm_relu(
inputs,
is_training,
relu=False,
init_zero=True,
data_format=data_format,
global_bn=global_bn,
batch_norm_decay=batch_norm_decay,
)
return tf.nn.relu(inputs + shortcut)
def bottleneck_block(
inputs,
filters,
is_training,
strides,
use_projection=False,
data_format='channels_first',
dropblock_keep_prob=None,
dropblock_size=None,
global_bn=True,
batch_norm_decay=0.9,
):
"""Bottleneck block variant for residual networks with BN after convolutions.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]`.
filters: `int` number of filters for the first two convolutions. Note that
the third and final convolution will use 4 times as many filters.
is_training: `bool` for whether the model is in training.
strides: `int` block stride. If greater than 1, this block will ultimately
downsample the input.
use_projection: `bool` for whether this block should use a projection
shortcut (versus the default identity shortcut). This is usually `True`
for the first block of a block group, which may change the number of
filters and the resolution.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
dropblock_keep_prob: `float` or `Tensor` keep_prob parameter of DropBlock.
"None" means no DropBlock.
dropblock_size: `int` size parameter of DropBlock. Will not be used if
dropblock_keep_prob is "None".
global_bn: `bool` whether to aggregate BN statistics across distributed
cores.
batch_norm_decay: `float` batch norm decay parameter.
Returns:
The output `Tensor` of the block.
"""
shortcut = inputs
if use_projection:
# Projection shortcut only in first block within a group. Bottleneck blocks
# end with 4 times the number of filters.
filters_out = 4 * filters
shortcut = conv2d_fixed_padding(
inputs=inputs,
filters=filters_out,
kernel_size=1,
strides=strides,
data_format=data_format,
)
shortcut = batch_norm_relu(
shortcut,
is_training,
relu=False,
data_format=data_format,
global_bn=global_bn,
batch_norm_decay=batch_norm_decay,
)
shortcut = dropblock(
shortcut, is_training=is_training, data_format=data_format,
keep_prob=dropblock_keep_prob, dropblock_size=dropblock_size)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=1, strides=1,
data_format=data_format)
inputs = batch_norm_relu(
inputs,
is_training,
data_format=data_format,
global_bn=global_bn,
batch_norm_decay=batch_norm_decay,
)
inputs = dropblock(
inputs, is_training=is_training, data_format=data_format,
keep_prob=dropblock_keep_prob, dropblock_size=dropblock_size)
inputs = conv2d_fixed_padding(
inputs=inputs,
filters=filters,
kernel_size=3,
strides=strides,
data_format=data_format,
)
inputs = batch_norm_relu(
inputs,
is_training,
data_format=data_format,
global_bn=global_bn,
batch_norm_decay=batch_norm_decay,
)
inputs = dropblock(
inputs, is_training=is_training, data_format=data_format,
keep_prob=dropblock_keep_prob, dropblock_size=dropblock_size)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
data_format=data_format)
inputs = batch_norm_relu(
inputs,
is_training,
relu=False,
init_zero=True,
data_format=data_format,
global_bn=global_bn,
batch_norm_decay=batch_norm_decay,
)
inputs = dropblock(
inputs, is_training=is_training, data_format=data_format,
keep_prob=dropblock_keep_prob, dropblock_size=dropblock_size)
return tf.nn.relu(inputs + shortcut)
def block_group(
inputs,
filters,
block_fn,
blocks,
strides,
is_training,
name,
data_format='channels_first',
dropblock_keep_prob=None,
dropblock_size=None,
):
"""Creates one group of blocks for the ResNet model.
Args:
inputs: `Tensor` of size `[batch, channels, height, width]`.
filters: `int` number of filters for the first convolution of the layer.
block_fn: `function` for the block to use within the model
blocks: `int` number of blocks contained in the layer.
strides: `int` stride to use for the first convolution of the layer. If
greater than 1, this layer will downsample the input.
is_training: `bool` for whether the model is training.
name: `str`name for the Tensor output of the block layer.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
dropblock_keep_prob: `float` or `Tensor` keep_prob parameter of DropBlock.
"None" means no DropBlock.
dropblock_size: `int` size parameter of DropBlock. Will not be used if
dropblock_keep_prob is "None".
Returns:
The output `Tensor` of the block layer.
"""
# Only the first block per block_group uses projection shortcut and strides.
inputs = block_fn(inputs, filters, is_training, strides,
use_projection=True, data_format=data_format,
dropblock_keep_prob=dropblock_keep_prob,
dropblock_size=dropblock_size)
for _ in range(1, blocks):
inputs = block_fn(inputs, filters, is_training, 1,
data_format=data_format,
dropblock_keep_prob=dropblock_keep_prob,
dropblock_size=dropblock_size)
return tf.identity(inputs, name)
def _resnet_v1_generator(
block_fn: BlockFn,
layers: Tuple[int, int, int, int],
width_multiplier: int,
cifar_stem: bool = False,
data_format: str = 'channels_last',
dropblock_keep_probs: Optional[Tuple[float, float, float, float]] = None,
dropblock_size: Optional[int] = None,
train_mode: str = 'pretrain',
fine_tune_after_block: int = -1,
global_bn: bool = True,
batch_norm_decay: float = 0.9,
) -> Callable[[tf.Tensor, bool], Dict[str, tf.Tensor]]:
"""Generator for ResNet v1 models.
Args:
block_fn: `function` for the block to use within the model. Either
`residual_block` or `bottleneck_block`.
layers: list of 4 `int`s denoting the number of blocks to include in each of
the 4 block groups. Each group consists of blocks that take inputs of the
same resolution.
width_multiplier: `int` width multiplier for network.
cifar_stem: `bool` If True, use a 3x3 conv without strides or pooling as
stem.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
dropblock_keep_probs: `list` of 4 elements denoting keep_prob of DropBlock
for each block group. None indicates no DropBlock for the corresponding
block group.
dropblock_size: `int`: size parameter of DropBlock.
train_mode: `str` either "pretrain" or "finetune".
fine_tune_after_block: `int` the layers after which block that we will
fine-tune. -1 means fine-tuning everything. 0 means fine-tuning after stem
block. 4 means fine-tuning just the linear head.
global_bn: `bool` whether to aggregate BN statistics across distributed
cores.
batch_norm_decay: `float` batch norm decay parameter.
Returns:
Model `function` that takes in `inputs` and `is_training` and returns the
output `Tensor` of the ResNet model.
Raises:
if dropblock_keep_probs is not 'None' or a list with len 4.
"""
if dropblock_keep_probs is None:
dropblock_keep_probs = [None] * 4
if not isinstance(dropblock_keep_probs,
list) or len(dropblock_keep_probs) != 4:
raise ValueError('dropblock_keep_probs is not valid:', dropblock_keep_probs)
def model(inputs: tf.Tensor, is_training: bool) -> Dict[str, tf.Tensor]:
"""Creation of the model graph."""
outputs = {}
if cifar_stem:
inputs = conv2d_fixed_padding(
inputs=inputs, filters=64 * width_multiplier, kernel_size=3,
strides=1, data_format=data_format)
inputs = tf.identity(inputs, 'initial_conv')
inputs = batch_norm_relu(
inputs,
is_training,
data_format=data_format,
global_bn=global_bn,
batch_norm_decay=batch_norm_decay,
)
inputs = tf.identity(inputs, 'initial_max_pool')
else:
inputs = conv2d_fixed_padding(
inputs=inputs,
filters=64 * width_multiplier,
kernel_size=7,
strides=2,
data_format=data_format,
)
inputs = tf.identity(inputs, 'initial_conv')
inputs = batch_norm_relu(
inputs,
is_training,
data_format=data_format,
global_bn=global_bn,
batch_norm_decay=batch_norm_decay,
)
inputs = tf.layers.max_pooling2d(
inputs=inputs, pool_size=3, strides=2, padding='SAME',
data_format=data_format)
inputs = tf.identity(inputs, 'initial_max_pool')
def filter_trainable_variables(trainable_variables, after_block):
"""Add new trainable variables for the immediate precedent block."""
if after_block == 0:
trainable_variables[after_block] = tf.trainable_variables()
else:
trainable_variables[after_block] = []
for var in tf.trainable_variables():
to_keep = True
for j in range(after_block):
if var in trainable_variables[j]:
to_keep = False
break
if to_keep:
trainable_variables[after_block].append(var)
def add_to_collection(trainable_variables, prefix):
"""Put variables into graph collection."""
for after_block, variables in trainable_variables.items():
collection = prefix + str(after_block)
for var in variables:
tf.add_to_collection(collection, var)
trainable_variables = {}
filter_trainable_variables(trainable_variables, after_block=0)
if train_mode == 'finetune' and fine_tune_after_block == 0:
inputs = tf.stop_gradient(inputs)
inputs = block_group(
inputs=inputs, filters=64 * width_multiplier, block_fn=block_fn,
blocks=layers[0], strides=1, is_training=is_training,
name='block_group1', data_format=data_format,
dropblock_keep_prob=dropblock_keep_probs[0],
dropblock_size=dropblock_size)
outputs['block_group1'] = inputs
filter_trainable_variables(trainable_variables, after_block=1)
if train_mode == 'finetune' and fine_tune_after_block == 1:
inputs = tf.stop_gradient(inputs)
inputs = block_group(
inputs=inputs, filters=128 * width_multiplier, block_fn=block_fn,
blocks=layers[1], strides=2, is_training=is_training,
name='block_group2', data_format=data_format,
dropblock_keep_prob=dropblock_keep_probs[1],
dropblock_size=dropblock_size)
outputs['block_group2'] = inputs
filter_trainable_variables(trainable_variables, after_block=2)
if train_mode == 'finetune' and fine_tune_after_block == 2:
inputs = tf.stop_gradient(inputs)
inputs = block_group(
inputs=inputs, filters=256 * width_multiplier, block_fn=block_fn,
blocks=layers[2], strides=2, is_training=is_training,
name='block_group3', data_format=data_format,
dropblock_keep_prob=dropblock_keep_probs[2],
dropblock_size=dropblock_size)
outputs['block_group3'] = inputs
filter_trainable_variables(trainable_variables, after_block=3)
if train_mode == 'finetune' and fine_tune_after_block == 3:
inputs = tf.stop_gradient(inputs)
inputs = block_group(
inputs=inputs, filters=512 * width_multiplier, block_fn=block_fn,
blocks=layers[3], strides=2, is_training=is_training,
name='block_group4', data_format=data_format,
dropblock_keep_prob=dropblock_keep_probs[3],
dropblock_size=dropblock_size)
outputs['block_group4'] = inputs
filter_trainable_variables(trainable_variables, after_block=4)
if train_mode == 'finetune' and fine_tune_after_block == 4:
inputs = tf.stop_gradient(inputs)
# The activation is 7x7 so this is a global average pool.
# TODO: reduce_mean will be faster.
pool_size = (inputs.shape[1], inputs.shape[2])
inputs = tf.layers.average_pooling2d(
inputs=inputs,
pool_size=pool_size,
strides=1,
padding='VALID',
data_format=data_format,
)
inputs = tf.identity(inputs, 'final_avg_pool')
inputs = tf.squeeze(inputs, (1, 2))
outputs['final_avg_pool'] = inputs
# filter_trainable_variables(trainable_variables, after_block=5)
add_to_collection(trainable_variables, 'trainable_variables_inblock_')
return outputs
return model
def resnet_v2(
depth: int, width_multiplier: int, verify_input_range: bool = False
) -> Callable[[tf.Tensor, bool], Dict[str, tf.Tensor]]:
"""Returns the ResNet-v2/SimCLR+BiT model for a given architecture."""
bit_model_archs = [(50, 1), (50, 3), (101, 1), (101, 3), (152, 2), (152, 4)]
assert (depth, width_multiplier) in bit_model_archs, (
'There is no SimCLR+BiT model architecture for the requested model depth '
'and width multiplier: ({},{}). Valid model combinations are: {}'.format(
depth, width_multiplier, bit_model_archs
)
)
model_name = f'ResNet-{depth}x{width_multiplier}'
def model(inputs: tf.Tensor, is_training: bool):
del is_training # No difference between train/eval graph
_, endpoints = bit.bit_embedding(
inputs,
model_name=model_name,
trainable=True,
verify_input_range=verify_input_range,
)
return endpoints
return model
def resnet_v1(
resnet_depth: int,
width_multiplier: int,
cifar_stem: bool = False,
data_format: str = 'channels_last',
dropblock_keep_probs: Optional[Tuple[float, float, float, float]] = None,
dropblock_size: Optional[int] = None,
train_mode: str = 'pretrain',
fine_tune_after_block: int = -1,
global_bn: bool = True,
batch_norm_decay: float = 0.9,
) -> Callable[[tf.Tensor, bool], Dict[str, tf.Tensor]]:
"""Returns the ResNet-v1 model for a given size and number of output classes."""
model_params = {
18: {'block': residual_block, 'layers': [2, 2, 2, 2]},
34: {'block': residual_block, 'layers': [3, 4, 6, 3]},
50: {'block': bottleneck_block, 'layers': [3, 4, 6, 3]},
101: {'block': bottleneck_block, 'layers': [3, 4, 23, 3]},
152: {'block': bottleneck_block, 'layers': [3, 8, 36, 3]},
200: {'block': bottleneck_block, 'layers': [3, 24, 36, 3]}
}
if resnet_depth not in model_params:
raise ValueError('Not a valid resnet_depth:', resnet_depth)
params = model_params[resnet_depth]
return _resnet_v1_generator(
params['block'],
tuple(params['layers']),
width_multiplier,
cifar_stem=cifar_stem,
dropblock_keep_probs=dropblock_keep_probs,
dropblock_size=dropblock_size,
data_format=data_format,
train_mode=train_mode,
fine_tune_after_block=fine_tune_after_block,
global_bn=global_bn,
batch_norm_decay=batch_norm_decay,
)