-
Notifications
You must be signed in to change notification settings - Fork 673
/
Copy pathtcp_bbr.c
2411 lines (2104 loc) · 83.1 KB
/
tcp_bbr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* BBR (Bottleneck Bandwidth and RTT) congestion control
*
* BBR is a model-based congestion control algorithm that aims for low queues,
* low loss, and (bounded) Reno/CUBIC coexistence. To maintain a model of the
* network path, it uses measurements of bandwidth and RTT, as well as (if they
* occur) packet loss and/or shallow-threshold ECN signals. Note that although
* it can use ECN or loss signals explicitly, it does not require either; it
* can bound its in-flight data based on its estimate of the BDP.
*
* The model has both higher and lower bounds for the operating range:
* lo: bw_lo, inflight_lo: conservative short-term lower bound
* hi: bw_hi, inflight_hi: robust long-term upper bound
* The bandwidth-probing time scale is (a) extended dynamically based on
* estimated BDP to improve coexistence with Reno/CUBIC; (b) bounded by
* an interactive wall-clock time-scale to be more scalable and responsive
* than Reno and CUBIC.
*
* Here is a state transition diagram for BBR:
*
* |
* V
* +---> STARTUP ----+
* | | |
* | V |
* | DRAIN ----+
* | | |
* | V |
* +---> PROBE_BW ----+
* | ^ | |
* | | | |
* | +----+ |
* | |
* +---- PROBE_RTT <--+
*
* A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
* When it estimates the pipe is full, it enters DRAIN to drain the queue.
* In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
* A long-lived BBR flow spends the vast majority of its time remaining
* (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
* in a fair manner, with a small, bounded queue. *If* a flow has been
* continuously sending for the entire min_rtt window, and hasn't seen an RTT
* sample that matches or decreases its min_rtt estimate for 10 seconds, then
* it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
* the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
* we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
* otherwise we enter STARTUP to try to fill the pipe.
*
* BBR is described in detail in:
* "BBR: Congestion-Based Congestion Control",
* Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
* Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
*
* There is a public e-mail list for discussing BBR development and testing:
* https://groups.google.com/forum/#!forum/bbr-dev
*
* NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
* otherwise TCP stack falls back to an internal pacing using one high
* resolution timer per TCP socket and may use more resources.
*/
#include <linux/btf.h>
#include <linux/btf_ids.h>
#include <linux/module.h>
#include <net/tcp.h>
#include <linux/inet_diag.h>
#include <linux/inet.h>
#include <linux/random.h>
#include <linux/win_minmax.h>
#include <trace/events/tcp.h>
#include "tcp_dctcp.h"
#define BBR_VERSION 3
#define bbr_param(sk,name) (bbr_ ## name)
/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
* estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
* This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
* Since the minimum window is >=4 packets, the lower bound isn't
* an issue. The upper bound isn't an issue with existing technologies.
*/
#define BW_SCALE 24
#define BW_UNIT (1 << BW_SCALE)
#define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
#define BBR_UNIT (1 << BBR_SCALE)
/* BBR has the following modes for deciding how fast to send: */
enum bbr_mode {
BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
BBR_DRAIN, /* drain any queue created during startup */
BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
};
/* How does the incoming ACK stream relate to our bandwidth probing? */
enum bbr_ack_phase {
BBR_ACKS_INIT, /* not probing; not getting probe feedback */
BBR_ACKS_REFILLING, /* sending at est. bw to fill pipe */
BBR_ACKS_PROBE_STARTING, /* inflight rising to probe bw */
BBR_ACKS_PROBE_FEEDBACK, /* getting feedback from bw probing */
BBR_ACKS_PROBE_STOPPING, /* stopped probing; still getting feedback */
};
/* BBR congestion control block */
struct bbr {
u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
u32 min_rtt_stamp; /* timestamp of min_rtt_us */
u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
u32 probe_rtt_min_us; /* min RTT in probe_rtt_win_ms win */
u32 probe_rtt_min_stamp; /* timestamp of probe_rtt_min_us*/
u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
u64 cycle_mstamp; /* time of this cycle phase start */
u32 mode:2, /* current bbr_mode in state machine */
prev_ca_state:3, /* CA state on previous ACK */
round_start:1, /* start of packet-timed tx->ack round? */
ce_state:1, /* If most recent data has CE bit set */
bw_probe_up_rounds:5, /* cwnd-limited rounds in PROBE_UP */
try_fast_path:1, /* can we take fast path? */
idle_restart:1, /* restarting after idle? */
probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
init_cwnd:7, /* initial cwnd */
unused_1:10;
u32 pacing_gain:10, /* current gain for setting pacing rate */
cwnd_gain:10, /* current gain for setting cwnd */
full_bw_reached:1, /* reached full bw in Startup? */
full_bw_cnt:2, /* number of rounds without large bw gains */
cycle_idx:2, /* current index in pacing_gain cycle array */
has_seen_rtt:1, /* have we seen an RTT sample yet? */
unused_2:6;
u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
u32 full_bw; /* recent bw, to estimate if pipe is full */
/* For tracking ACK aggregation: */
u64 ack_epoch_mstamp; /* start of ACK sampling epoch */
u16 extra_acked[2]; /* max excess data ACKed in epoch */
u32 ack_epoch_acked:20, /* packets (S)ACKed in sampling epoch */
extra_acked_win_rtts:5, /* age of extra_acked, in round trips */
extra_acked_win_idx:1, /* current index in extra_acked array */
/* BBR v3 state: */
full_bw_now:1, /* recently reached full bw plateau? */
startup_ecn_rounds:2, /* consecutive hi ECN STARTUP rounds */
loss_in_cycle:1, /* packet loss in this cycle? */
ecn_in_cycle:1, /* ECN in this cycle? */
unused_3:1;
u32 loss_round_delivered; /* scb->tx.delivered ending loss round */
u32 undo_bw_lo; /* bw_lo before latest losses */
u32 undo_inflight_lo; /* inflight_lo before latest losses */
u32 undo_inflight_hi; /* inflight_hi before latest losses */
u32 bw_latest; /* max delivered bw in last round trip */
u32 bw_lo; /* lower bound on sending bandwidth */
u32 bw_hi[2]; /* max recent measured bw sample */
u32 inflight_latest; /* max delivered data in last round trip */
u32 inflight_lo; /* lower bound of inflight data range */
u32 inflight_hi; /* upper bound of inflight data range */
u32 bw_probe_up_cnt; /* packets delivered per inflight_hi incr */
u32 bw_probe_up_acks; /* packets (S)ACKed since inflight_hi incr */
u32 probe_wait_us; /* PROBE_DOWN until next clock-driven probe */
u32 prior_rcv_nxt; /* tp->rcv_nxt when CE state last changed */
u32 ecn_eligible:1, /* sender can use ECN (RTT, handshake)? */
ecn_alpha:9, /* EWMA delivered_ce/delivered; 0..256 */
bw_probe_samples:1, /* rate samples reflect bw probing? */
prev_probe_too_high:1, /* did last PROBE_UP go too high? */
stopped_risky_probe:1, /* last PROBE_UP stopped due to risk? */
rounds_since_probe:8, /* packet-timed rounds since probed bw */
loss_round_start:1, /* loss_round_delivered round trip? */
loss_in_round:1, /* loss marked in this round trip? */
ecn_in_round:1, /* ECN marked in this round trip? */
ack_phase:3, /* bbr_ack_phase: meaning of ACKs */
loss_events_in_round:4,/* losses in STARTUP round */
initialized:1; /* has bbr_init() been called? */
u32 alpha_last_delivered; /* tp->delivered at alpha update */
u32 alpha_last_delivered_ce; /* tp->delivered_ce at alpha update */
u8 unused_4; /* to preserve alignment */
struct tcp_plb_state plb;
};
struct bbr_context {
u32 sample_bw;
};
/* Window length of min_rtt filter (in sec): */
static const u32 bbr_min_rtt_win_sec = 10;
/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
static const u32 bbr_probe_rtt_mode_ms = 200;
/* Window length of probe_rtt_min_us filter (in ms), and consequently the
* typical interval between PROBE_RTT mode entries. The default is 5000ms.
* Note that bbr_probe_rtt_win_ms must be <= bbr_min_rtt_win_sec * MSEC_PER_SEC
*/
static const u32 bbr_probe_rtt_win_ms = 5000;
/* Proportion of cwnd to estimated BDP in PROBE_RTT, in units of BBR_UNIT: */
static const u32 bbr_probe_rtt_cwnd_gain = BBR_UNIT * 1 / 2;
/* Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
* in bigger TSO bursts. We cut the RTT-based allowance in half
* for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
* is below 1500 bytes after 6 * ~500 usec = 3ms.
*/
static const u32 bbr_tso_rtt_shift = 9;
/* Pace at ~1% below estimated bw, on average, to reduce queue at bottleneck.
* In order to help drive the network toward lower queues and low latency while
* maintaining high utilization, the average pacing rate aims to be slightly
* lower than the estimated bandwidth. This is an important aspect of the
* design.
*/
static const int bbr_pacing_margin_percent = 1;
/* We use a startup_pacing_gain of 4*ln(2) because it's the smallest value
* that will allow a smoothly increasing pacing rate that will double each RTT
* and send the same number of packets per RTT that an un-paced, slow-starting
* Reno or CUBIC flow would:
*/
static const int bbr_startup_pacing_gain = BBR_UNIT * 277 / 100 + 1;
/* The gain for deriving startup cwnd: */
static const int bbr_startup_cwnd_gain = BBR_UNIT * 2;
/* The pacing gain in BBR_DRAIN is calculated to typically drain
* the queue created in BBR_STARTUP in a single round:
*/
static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
static const int bbr_cwnd_gain = BBR_UNIT * 2;
/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
static const int bbr_pacing_gain[] = {
BBR_UNIT * 5 / 4, /* UP: probe for more available bw */
BBR_UNIT * 91 / 100, /* DOWN: drain queue and/or yield bw */
BBR_UNIT, /* CRUISE: try to use pipe w/ some headroom */
BBR_UNIT, /* REFILL: refill pipe to estimated 100% */
};
enum bbr_pacing_gain_phase {
BBR_BW_PROBE_UP = 0, /* push up inflight to probe for bw/vol */
BBR_BW_PROBE_DOWN = 1, /* drain excess inflight from the queue */
BBR_BW_PROBE_CRUISE = 2, /* use pipe, w/ headroom in queue/pipe */
BBR_BW_PROBE_REFILL = 3, /* v2: refill the pipe again to 100% */
};
/* Try to keep at least this many packets in flight, if things go smoothly. For
* smooth functioning, a sliding window protocol ACKing every other packet
* needs at least 4 packets in flight:
*/
static const u32 bbr_cwnd_min_target = 4;
/* To estimate if BBR_STARTUP or BBR_BW_PROBE_UP has filled pipe... */
/* If bw has increased significantly (1.25x), there may be more bw available: */
static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
static const u32 bbr_full_bw_cnt = 3;
/* Gain factor for adding extra_acked to target cwnd: */
static const int bbr_extra_acked_gain = BBR_UNIT;
/* Window length of extra_acked window. */
static const u32 bbr_extra_acked_win_rtts = 5;
/* Max allowed val for ack_epoch_acked, after which sampling epoch is reset */
static const u32 bbr_ack_epoch_acked_reset_thresh = 1U << 20;
/* Time period for clamping cwnd increment due to ack aggregation */
static const u32 bbr_extra_acked_max_us = 100 * 1000;
/* Flags to control BBR ECN-related behavior... */
/* Ensure ACKs only ACK packets with consistent ECN CE status? */
static const bool bbr_precise_ece_ack = true;
/* Max RTT (in usec) at which to use sender-side ECN logic.
* Disabled when 0 (ECN allowed at any RTT).
*/
static const u32 bbr_ecn_max_rtt_us = 5000;
/* On losses, scale down inflight and pacing rate by beta scaled by BBR_SCALE.
* No loss response when 0.
*/
static const u32 bbr_beta = BBR_UNIT * 30 / 100;
/* Gain factor for ECN mark ratio samples, scaled by BBR_SCALE (1/16 = 6.25%) */
static const u32 bbr_ecn_alpha_gain = BBR_UNIT * 1 / 16;
/* The initial value for ecn_alpha; 1.0 allows a flow to respond quickly
* to congestion if the bottleneck is congested when the flow starts up.
*/
static const u32 bbr_ecn_alpha_init = BBR_UNIT;
/* On ECN, cut inflight_lo to (1 - ecn_factor * ecn_alpha) scaled by BBR_SCALE.
* No ECN based bounding when 0.
*/
static const u32 bbr_ecn_factor = BBR_UNIT * 1 / 3; /* 1/3 = 33% */
/* Estimate bw probing has gone too far if CE ratio exceeds this threshold.
* Scaled by BBR_SCALE. Disabled when 0.
*/
static const u32 bbr_ecn_thresh = BBR_UNIT * 1 / 2; /* 1/2 = 50% */
/* If non-zero, if in a cycle with no losses but some ECN marks, after ECN
* clears then make the first round's increment to inflight_hi the following
* fraction of inflight_hi.
*/
static const u32 bbr_ecn_reprobe_gain = BBR_UNIT * 1 / 2;
/* Estimate bw probing has gone too far if loss rate exceeds this level. */
static const u32 bbr_loss_thresh = BBR_UNIT * 2 / 100; /* 2% loss */
/* Slow down for a packet loss recovered by TLP? */
static const bool bbr_loss_probe_recovery = true;
/* Exit STARTUP if number of loss marking events in a Recovery round is >= N,
* and loss rate is higher than bbr_loss_thresh.
* Disabled if 0.
*/
static const u32 bbr_full_loss_cnt = 6;
/* Exit STARTUP if number of round trips with ECN mark rate above ecn_thresh
* meets this count.
*/
static const u32 bbr_full_ecn_cnt = 2;
/* Fraction of unutilized headroom to try to leave in path upon high loss. */
static const u32 bbr_inflight_headroom = BBR_UNIT * 15 / 100;
/* How much do we increase cwnd_gain when probing for bandwidth in
* BBR_BW_PROBE_UP? This specifies the increment in units of
* BBR_UNIT/4. The default is 1, meaning 0.25.
* The min value is 0 (meaning 0.0); max is 3 (meaning 0.75).
*/
static const u32 bbr_bw_probe_cwnd_gain = 1;
/* Max number of packet-timed rounds to wait before probing for bandwidth. If
* we want to tolerate 1% random loss per round, and not have this cut our
* inflight too much, we must probe for bw periodically on roughly this scale.
* If low, limits Reno/CUBIC coexistence; if high, limits loss tolerance.
* We aim to be fair with Reno/CUBIC up to a BDP of at least:
* BDP = 25Mbps * .030sec /(1514bytes) = 61.9 packets
*/
static const u32 bbr_bw_probe_max_rounds = 63;
/* Max amount of randomness to inject in round counting for Reno-coexistence.
*/
static const u32 bbr_bw_probe_rand_rounds = 2;
/* Use BBR-native probe time scale starting at this many usec.
* We aim to be fair with Reno/CUBIC up to an inter-loss time epoch of at least:
* BDP*RTT = 25Mbps * .030sec /(1514bytes) * 0.030sec = 1.9 secs
*/
static const u32 bbr_bw_probe_base_us = 2 * USEC_PER_SEC; /* 2 secs */
/* Use BBR-native probes spread over this many usec: */
static const u32 bbr_bw_probe_rand_us = 1 * USEC_PER_SEC; /* 1 secs */
/* Use fast path if app-limited, no loss/ECN, and target cwnd was reached? */
static const bool bbr_fast_path = true;
/* Use fast ack mode? */
static const bool bbr_fast_ack_mode = true;
static u32 bbr_max_bw(const struct sock *sk);
static u32 bbr_bw(const struct sock *sk);
static void bbr_exit_probe_rtt(struct sock *sk);
static void bbr_reset_congestion_signals(struct sock *sk);
static void bbr_run_loss_probe_recovery(struct sock *sk);
static void bbr_check_probe_rtt_done(struct sock *sk);
/* This connection can use ECN if both endpoints have signaled ECN support in
* the handshake and the per-route settings indicated this is a
* shallow-threshold ECN environment, meaning both:
* (a) ECN CE marks indicate low-latency/shallow-threshold congestion, and
* (b) TCP endpoints provide precise ACKs that only ACK data segments
* with consistent ECN CE status
*/
static bool bbr_can_use_ecn(const struct sock *sk)
{
return (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) &&
(tcp_sk(sk)->ecn_flags & TCP_ECN_LOW);
}
/* Do we estimate that STARTUP filled the pipe? */
static bool bbr_full_bw_reached(const struct sock *sk)
{
const struct bbr *bbr = inet_csk_ca(sk);
return bbr->full_bw_reached;
}
/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
static u32 bbr_max_bw(const struct sock *sk)
{
const struct bbr *bbr = inet_csk_ca(sk);
return max(bbr->bw_hi[0], bbr->bw_hi[1]);
}
/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
static u32 bbr_bw(const struct sock *sk)
{
const struct bbr *bbr = inet_csk_ca(sk);
return min(bbr_max_bw(sk), bbr->bw_lo);
}
/* Return maximum extra acked in past k-2k round trips,
* where k = bbr_extra_acked_win_rtts.
*/
static u16 bbr_extra_acked(const struct sock *sk)
{
struct bbr *bbr = inet_csk_ca(sk);
return max(bbr->extra_acked[0], bbr->extra_acked[1]);
}
/* Return rate in bytes per second, optionally with a gain.
* The order here is chosen carefully to avoid overflow of u64. This should
* work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
*/
static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain,
int margin)
{
unsigned int mss = tcp_sk(sk)->mss_cache;
rate *= mss;
rate *= gain;
rate >>= BBR_SCALE;
rate *= USEC_PER_SEC / 100 * (100 - margin);
rate >>= BW_SCALE;
rate = max(rate, 1ULL);
return rate;
}
static u64 bbr_bw_bytes_per_sec(struct sock *sk, u64 rate)
{
return bbr_rate_bytes_per_sec(sk, rate, BBR_UNIT, 0);
}
/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
static unsigned long bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
{
u64 rate = bw;
rate = bbr_rate_bytes_per_sec(sk, rate, gain,
bbr_pacing_margin_percent);
rate = min_t(u64, rate, sk->sk_max_pacing_rate);
return rate;
}
/* Initialize pacing rate to: startup_pacing_gain * init_cwnd / RTT. */
static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bbr *bbr = inet_csk_ca(sk);
u64 bw;
u32 rtt_us;
if (tp->srtt_us) { /* any RTT sample yet? */
rtt_us = max(tp->srtt_us >> 3, 1U);
bbr->has_seen_rtt = 1;
} else { /* no RTT sample yet */
rtt_us = USEC_PER_MSEC; /* use nominal default RTT */
}
bw = (u64)tcp_snd_cwnd(tp) * BW_UNIT;
do_div(bw, rtt_us);
sk->sk_pacing_rate =
bbr_bw_to_pacing_rate(sk, bw, bbr_param(sk, startup_pacing_gain));
}
/* Pace using current bw estimate and a gain factor. */
static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bbr *bbr = inet_csk_ca(sk);
unsigned long rate = bbr_bw_to_pacing_rate(sk, bw, gain);
if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
bbr_init_pacing_rate_from_rtt(sk);
if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
sk->sk_pacing_rate = rate;
}
/* Return the number of segments BBR would like in a TSO/GSO skb, given a
* particular max gso size as a constraint. TODO: make this simpler and more
* consistent by switching bbr to just call tcp_tso_autosize().
*/
static u32 bbr_tso_segs_generic(struct sock *sk, unsigned int mss_now,
u32 gso_max_size)
{
struct bbr *bbr = inet_csk_ca(sk);
u32 segs, r;
u64 bytes;
/* Budget a TSO/GSO burst size allowance based on bw (pacing_rate). */
bytes = sk->sk_pacing_rate >> sk->sk_pacing_shift;
/* Budget a TSO/GSO burst size allowance based on min_rtt. For every
* K = 2^tso_rtt_shift microseconds of min_rtt, halve the burst.
* The min_rtt-based burst allowance is: 64 KBytes / 2^(min_rtt/K)
*/
if (bbr_param(sk, tso_rtt_shift)) {
r = bbr->min_rtt_us >> bbr_param(sk, tso_rtt_shift);
if (r < BITS_PER_TYPE(u32)) /* prevent undefined behavior */
bytes += GSO_LEGACY_MAX_SIZE >> r;
}
bytes = min_t(u32, bytes, gso_max_size - 1 - MAX_TCP_HEADER);
segs = max_t(u32, bytes / mss_now,
sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
return segs;
}
/* Custom tcp_tso_autosize() for BBR, used at transmit time to cap skb size. */
__bpf_kfunc static u32 bbr_tso_segs(struct sock *sk, unsigned int mss_now)
{
return bbr_tso_segs_generic(sk, mss_now, sk->sk_gso_max_size);
}
/* Like bbr_tso_segs(), using mss_cache, ignoring driver's sk_gso_max_size. */
static u32 bbr_tso_segs_goal(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
return bbr_tso_segs_generic(sk, tp->mss_cache, GSO_LEGACY_MAX_SIZE);
}
/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
static void bbr_save_cwnd(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bbr *bbr = inet_csk_ca(sk);
if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
bbr->prior_cwnd = tcp_snd_cwnd(tp); /* this cwnd is good enough */
else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
bbr->prior_cwnd = max(bbr->prior_cwnd, tcp_snd_cwnd(tp));
}
__bpf_kfunc static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bbr *bbr = inet_csk_ca(sk);
if (event == CA_EVENT_TX_START) {
if (!tp->app_limited)
return;
bbr->idle_restart = 1;
bbr->ack_epoch_mstamp = tp->tcp_mstamp;
bbr->ack_epoch_acked = 0;
/* Avoid pointless buffer overflows: pace at est. bw if we don't
* need more speed (we're restarting from idle and app-limited).
*/
if (bbr->mode == BBR_PROBE_BW)
bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
else if (bbr->mode == BBR_PROBE_RTT)
bbr_check_probe_rtt_done(sk);
} else if ((event == CA_EVENT_ECN_IS_CE ||
event == CA_EVENT_ECN_NO_CE) &&
bbr_can_use_ecn(sk) &&
bbr_param(sk, precise_ece_ack)) {
u32 state = bbr->ce_state;
dctcp_ece_ack_update(sk, event, &bbr->prior_rcv_nxt, &state);
bbr->ce_state = state;
} else if (event == CA_EVENT_TLP_RECOVERY &&
bbr_param(sk, loss_probe_recovery)) {
bbr_run_loss_probe_recovery(sk);
}
}
/* Calculate bdp based on min RTT and the estimated bottleneck bandwidth:
*
* bdp = ceil(bw * min_rtt * gain)
*
* The key factor, gain, controls the amount of queue. While a small gain
* builds a smaller queue, it becomes more vulnerable to noise in RTT
* measurements (e.g., delayed ACKs or other ACK compression effects). This
* noise may cause BBR to under-estimate the rate.
*/
static u32 bbr_bdp(struct sock *sk, u32 bw, int gain)
{
struct bbr *bbr = inet_csk_ca(sk);
u32 bdp;
u64 w;
/* If we've never had a valid RTT sample, cap cwnd at the initial
* default. This should only happen when the connection is not using TCP
* timestamps and has retransmitted all of the SYN/SYNACK/data packets
* ACKed so far. In this case, an RTO can cut cwnd to 1, in which
* case we need to slow-start up toward something safe: initial cwnd.
*/
if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
return bbr->init_cwnd; /* be safe: cap at initial cwnd */
w = (u64)bw * bbr->min_rtt_us;
/* Apply a gain to the given value, remove the BW_SCALE shift, and
* round the value up to avoid a negative feedback loop.
*/
bdp = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
return bdp;
}
/* To achieve full performance in high-speed paths, we budget enough cwnd to
* fit full-sized skbs in-flight on both end hosts to fully utilize the path:
* - one skb in sending host Qdisc,
* - one skb in sending host TSO/GSO engine
* - one skb being received by receiver host LRO/GRO/delayed-ACK engine
* Don't worry, at low rates this won't bloat cwnd because
* in such cases tso_segs_goal is small. The minimum cwnd is 4 packets,
* which allows 2 outstanding 2-packet sequences, to try to keep pipe
* full even with ACK-every-other-packet delayed ACKs.
*/
static u32 bbr_quantization_budget(struct sock *sk, u32 cwnd)
{
struct bbr *bbr = inet_csk_ca(sk);
u32 tso_segs_goal;
tso_segs_goal = 3 * bbr_tso_segs_goal(sk);
/* Allow enough full-sized skbs in flight to utilize end systems. */
cwnd = max_t(u32, cwnd, tso_segs_goal);
cwnd = max_t(u32, cwnd, bbr_param(sk, cwnd_min_target));
/* Ensure gain cycling gets inflight above BDP even for small BDPs. */
if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == BBR_BW_PROBE_UP)
cwnd += 2;
return cwnd;
}
/* Find inflight based on min RTT and the estimated bottleneck bandwidth. */
static u32 bbr_inflight(struct sock *sk, u32 bw, int gain)
{
u32 inflight;
inflight = bbr_bdp(sk, bw, gain);
inflight = bbr_quantization_budget(sk, inflight);
return inflight;
}
/* With pacing at lower layers, there's often less data "in the network" than
* "in flight". With TSQ and departure time pacing at lower layers (e.g. fq),
* we often have several skbs queued in the pacing layer with a pre-scheduled
* earliest departure time (EDT). BBR adapts its pacing rate based on the
* inflight level that it estimates has already been "baked in" by previous
* departure time decisions. We calculate a rough estimate of the number of our
* packets that might be in the network at the earliest departure time for the
* next skb scheduled:
* in_network_at_edt = inflight_at_edt - (EDT - now) * bw
* If we're increasing inflight, then we want to know if the transmit of the
* EDT skb will push inflight above the target, so inflight_at_edt includes
* bbr_tso_segs_goal() from the skb departing at EDT. If decreasing inflight,
* then estimate if inflight will sink too low just before the EDT transmit.
*/
static u32 bbr_packets_in_net_at_edt(struct sock *sk, u32 inflight_now)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bbr *bbr = inet_csk_ca(sk);
u64 now_ns, edt_ns, interval_us;
u32 interval_delivered, inflight_at_edt;
now_ns = tp->tcp_clock_cache;
edt_ns = max(tp->tcp_wstamp_ns, now_ns);
interval_us = div_u64(edt_ns - now_ns, NSEC_PER_USEC);
interval_delivered = (u64)bbr_bw(sk) * interval_us >> BW_SCALE;
inflight_at_edt = inflight_now;
if (bbr->pacing_gain > BBR_UNIT) /* increasing inflight */
inflight_at_edt += bbr_tso_segs_goal(sk); /* include EDT skb */
if (interval_delivered >= inflight_at_edt)
return 0;
return inflight_at_edt - interval_delivered;
}
/* Find the cwnd increment based on estimate of ack aggregation */
static u32 bbr_ack_aggregation_cwnd(struct sock *sk)
{
u32 max_aggr_cwnd, aggr_cwnd = 0;
if (bbr_param(sk, extra_acked_gain)) {
max_aggr_cwnd = ((u64)bbr_bw(sk) * bbr_extra_acked_max_us)
/ BW_UNIT;
aggr_cwnd = (bbr_param(sk, extra_acked_gain) * bbr_extra_acked(sk))
>> BBR_SCALE;
aggr_cwnd = min(aggr_cwnd, max_aggr_cwnd);
}
return aggr_cwnd;
}
/* Returns the cwnd for PROBE_RTT mode. */
static u32 bbr_probe_rtt_cwnd(struct sock *sk)
{
return max_t(u32, bbr_param(sk, cwnd_min_target),
bbr_bdp(sk, bbr_bw(sk), bbr_param(sk, probe_rtt_cwnd_gain)));
}
/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
* has drawn us down below target), or snap down to target if we're above it.
*/
static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
u32 acked, u32 bw, int gain, u32 cwnd,
struct bbr_context *ctx)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bbr *bbr = inet_csk_ca(sk);
u32 target_cwnd = 0;
if (!acked)
goto done; /* no packet fully ACKed; just apply caps */
target_cwnd = bbr_bdp(sk, bw, gain);
/* Increment the cwnd to account for excess ACKed data that seems
* due to aggregation (of data and/or ACKs) visible in the ACK stream.
*/
target_cwnd += bbr_ack_aggregation_cwnd(sk);
target_cwnd = bbr_quantization_budget(sk, target_cwnd);
/* Update cwnd and enable fast path if cwnd reaches target_cwnd. */
bbr->try_fast_path = 0;
if (bbr_full_bw_reached(sk)) { /* only cut cwnd if we filled the pipe */
cwnd += acked;
if (cwnd >= target_cwnd) {
cwnd = target_cwnd;
bbr->try_fast_path = 1;
}
} else if (cwnd < target_cwnd || cwnd < 2 * bbr->init_cwnd) {
cwnd += acked;
} else {
bbr->try_fast_path = 1;
}
cwnd = max_t(u32, cwnd, bbr_param(sk, cwnd_min_target));
done:
tcp_snd_cwnd_set(tp, min(cwnd, tp->snd_cwnd_clamp)); /* global cap */
if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
tcp_snd_cwnd_set(tp, min_t(u32, tcp_snd_cwnd(tp),
bbr_probe_rtt_cwnd(sk)));
}
static void bbr_reset_startup_mode(struct sock *sk)
{
struct bbr *bbr = inet_csk_ca(sk);
bbr->mode = BBR_STARTUP;
}
/* See if we have reached next round trip. Upon start of the new round,
* returns packets delivered since previous round start plus this ACK.
*/
static u32 bbr_update_round_start(struct sock *sk,
const struct rate_sample *rs, struct bbr_context *ctx)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bbr *bbr = inet_csk_ca(sk);
u32 round_delivered = 0;
bbr->round_start = 0;
/* See if we've reached the next RTT */
if (rs->interval_us > 0 &&
!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
round_delivered = tp->delivered - bbr->next_rtt_delivered;
bbr->next_rtt_delivered = tp->delivered;
bbr->round_start = 1;
}
return round_delivered;
}
/* Calculate the bandwidth based on how fast packets are delivered */
static void bbr_calculate_bw_sample(struct sock *sk,
const struct rate_sample *rs, struct bbr_context *ctx)
{
u64 bw = 0;
/* Divide delivered by the interval to find a (lower bound) bottleneck
* bandwidth sample. Delivered is in packets and interval_us in uS and
* ratio will be <<1 for most connections. So delivered is first scaled.
* Round up to allow growth at low rates, even with integer division.
*/
if (rs->interval_us > 0) {
if (WARN_ONCE(rs->delivered < 0,
"negative delivered: %d interval_us: %ld\n",
rs->delivered, rs->interval_us))
return;
bw = DIV_ROUND_UP_ULL((u64)rs->delivered * BW_UNIT, rs->interval_us);
}
ctx->sample_bw = bw;
}
/* Estimates the windowed max degree of ack aggregation.
* This is used to provision extra in-flight data to keep sending during
* inter-ACK silences.
*
* Degree of ack aggregation is estimated as extra data acked beyond expected.
*
* max_extra_acked = "maximum recent excess data ACKed beyond max_bw * interval"
* cwnd += max_extra_acked
*
* Max extra_acked is clamped by cwnd and bw * bbr_extra_acked_max_us (100 ms).
* Max filter is an approximate sliding window of 5-10 (packet timed) round
* trips for non-startup phase, and 1-2 round trips for startup.
*/
static void bbr_update_ack_aggregation(struct sock *sk,
const struct rate_sample *rs)
{
u32 epoch_us, expected_acked, extra_acked;
struct bbr *bbr = inet_csk_ca(sk);
struct tcp_sock *tp = tcp_sk(sk);
u32 extra_acked_win_rtts_thresh = bbr_param(sk, extra_acked_win_rtts);
if (!bbr_param(sk, extra_acked_gain) || rs->acked_sacked <= 0 ||
rs->delivered < 0 || rs->interval_us <= 0)
return;
if (bbr->round_start) {
bbr->extra_acked_win_rtts = min(0x1F,
bbr->extra_acked_win_rtts + 1);
if (!bbr_full_bw_reached(sk))
extra_acked_win_rtts_thresh = 1;
if (bbr->extra_acked_win_rtts >=
extra_acked_win_rtts_thresh) {
bbr->extra_acked_win_rtts = 0;
bbr->extra_acked_win_idx = bbr->extra_acked_win_idx ?
0 : 1;
bbr->extra_acked[bbr->extra_acked_win_idx] = 0;
}
}
/* Compute how many packets we expected to be delivered over epoch. */
epoch_us = tcp_stamp_us_delta(tp->delivered_mstamp,
bbr->ack_epoch_mstamp);
expected_acked = ((u64)bbr_bw(sk) * epoch_us) / BW_UNIT;
/* Reset the aggregation epoch if ACK rate is below expected rate or
* significantly large no. of ack received since epoch (potentially
* quite old epoch).
*/
if (bbr->ack_epoch_acked <= expected_acked ||
(bbr->ack_epoch_acked + rs->acked_sacked >=
bbr_ack_epoch_acked_reset_thresh)) {
bbr->ack_epoch_acked = 0;
bbr->ack_epoch_mstamp = tp->delivered_mstamp;
expected_acked = 0;
}
/* Compute excess data delivered, beyond what was expected. */
bbr->ack_epoch_acked = min_t(u32, 0xFFFFF,
bbr->ack_epoch_acked + rs->acked_sacked);
extra_acked = bbr->ack_epoch_acked - expected_acked;
extra_acked = min(extra_acked, tcp_snd_cwnd(tp));
if (extra_acked > bbr->extra_acked[bbr->extra_acked_win_idx])
bbr->extra_acked[bbr->extra_acked_win_idx] = extra_acked;
}
static void bbr_check_probe_rtt_done(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bbr *bbr = inet_csk_ca(sk);
if (!(bbr->probe_rtt_done_stamp &&
after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
return;
bbr->probe_rtt_min_stamp = tcp_jiffies32; /* schedule next PROBE_RTT */
tcp_snd_cwnd_set(tp, max(tcp_snd_cwnd(tp), bbr->prior_cwnd));
bbr_exit_probe_rtt(sk);
}
/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
* periodically drain the bottleneck queue, to converge to measure the true
* min_rtt (unloaded propagation delay). This allows the flows to keep queues
* small (reducing queuing delay and packet loss) and achieve fairness among
* BBR flows.
*
* The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
* we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
* After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
* round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
* re-enter the previous mode. BBR uses 200ms to approximately bound the
* performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
*
* Note that flows need only pay 2% if they are busy sending over the last 10
* seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
* natural silences or low-rate periods within 10 seconds where the rate is low
* enough for long enough to drain its queue in the bottleneck. We pick up
* these min RTT measurements opportunistically with our min_rtt filter. :-)
*/
static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
{
struct tcp_sock *tp = tcp_sk(sk);
struct bbr *bbr = inet_csk_ca(sk);
bool probe_rtt_expired, min_rtt_expired;
u32 expire;
/* Track min RTT in probe_rtt_win_ms to time next PROBE_RTT state. */
expire = bbr->probe_rtt_min_stamp +
msecs_to_jiffies(bbr_param(sk, probe_rtt_win_ms));
probe_rtt_expired = after(tcp_jiffies32, expire);
if (rs->rtt_us >= 0 &&
(rs->rtt_us < bbr->probe_rtt_min_us ||
(probe_rtt_expired && !rs->is_ack_delayed))) {
bbr->probe_rtt_min_us = rs->rtt_us;
bbr->probe_rtt_min_stamp = tcp_jiffies32;
}
/* Track min RTT seen in the min_rtt_win_sec filter window: */
expire = bbr->min_rtt_stamp + bbr_param(sk, min_rtt_win_sec) * HZ;
min_rtt_expired = after(tcp_jiffies32, expire);
if (bbr->probe_rtt_min_us <= bbr->min_rtt_us ||
min_rtt_expired) {
bbr->min_rtt_us = bbr->probe_rtt_min_us;
bbr->min_rtt_stamp = bbr->probe_rtt_min_stamp;
}
if (bbr_param(sk, probe_rtt_mode_ms) > 0 && probe_rtt_expired &&
!bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
bbr_save_cwnd(sk); /* note cwnd so we can restore it */
bbr->probe_rtt_done_stamp = 0;
bbr->ack_phase = BBR_ACKS_PROBE_STOPPING;
bbr->next_rtt_delivered = tp->delivered;
}
if (bbr->mode == BBR_PROBE_RTT) {
/* Ignore low rate samples during this mode. */
tp->app_limited =
(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
/* Maintain min packets in flight for max(200 ms, 1 round). */
if (!bbr->probe_rtt_done_stamp &&
tcp_packets_in_flight(tp) <= bbr_probe_rtt_cwnd(sk)) {
bbr->probe_rtt_done_stamp = tcp_jiffies32 +
msecs_to_jiffies(bbr_param(sk, probe_rtt_mode_ms));
bbr->probe_rtt_round_done = 0;
bbr->next_rtt_delivered = tp->delivered;
} else if (bbr->probe_rtt_done_stamp) {
if (bbr->round_start)
bbr->probe_rtt_round_done = 1;
if (bbr->probe_rtt_round_done)
bbr_check_probe_rtt_done(sk);
}
}
/* Restart after idle ends only once we process a new S/ACK for data */
if (rs->delivered > 0)
bbr->idle_restart = 0;
}
static void bbr_update_gains(struct sock *sk)
{
struct bbr *bbr = inet_csk_ca(sk);
switch (bbr->mode) {
case BBR_STARTUP:
bbr->pacing_gain = bbr_param(sk, startup_pacing_gain);
bbr->cwnd_gain = bbr_param(sk, startup_cwnd_gain);
break;
case BBR_DRAIN:
bbr->pacing_gain = bbr_param(sk, drain_gain); /* slow, to drain */
bbr->cwnd_gain = bbr_param(sk, startup_cwnd_gain); /* keep cwnd */
break;
case BBR_PROBE_BW:
bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
bbr->cwnd_gain = bbr_param(sk, cwnd_gain);
if (bbr_param(sk, bw_probe_cwnd_gain) &&
bbr->cycle_idx == BBR_BW_PROBE_UP)
bbr->cwnd_gain +=
BBR_UNIT * bbr_param(sk, bw_probe_cwnd_gain) / 4;
break;
case BBR_PROBE_RTT:
bbr->pacing_gain = BBR_UNIT;
bbr->cwnd_gain = BBR_UNIT;
break;
default:
WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode);
break;
}
}
__bpf_kfunc static u32 bbr_sndbuf_expand(struct sock *sk)
{
/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
return 3;
}
/* Incorporate a new bw sample into the current window of our max filter. */
static void bbr_take_max_bw_sample(struct sock *sk, u32 bw)
{
struct bbr *bbr = inet_csk_ca(sk);
bbr->bw_hi[1] = max(bw, bbr->bw_hi[1]);
}
/* Keep max of last 1-2 cycles. Each PROBE_BW cycle, flip filter window. */
static void bbr_advance_max_bw_filter(struct sock *sk)
{
struct bbr *bbr = inet_csk_ca(sk);
if (!bbr->bw_hi[1])
return; /* no samples in this window; remember old window */
bbr->bw_hi[0] = bbr->bw_hi[1];
bbr->bw_hi[1] = 0;
}
/* Reset the estimator for reaching full bandwidth based on bw plateau. */
static void bbr_reset_full_bw(struct sock *sk)
{