-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpipeline_test.py
150 lines (132 loc) · 4.89 KB
/
pipeline_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for pipeline."""
import dataclasses
import datetime
from absl.testing import absltest
from absl.testing import parameterized
import apache_beam as beam
from apache_beam.testing.util import assert_that
from apache_beam.testing.util import equal_to
import pandas as pd
from consent_based_conversion_adjustments import pipeline
_DATA_NOCONSENT = [{
'gclid': '21',
'conversion_timestamp': '2021-11-20 12:34:56 UTC',
'conversion_value': 20.0,
'conversion_date': '2021-11-20',
'conversion_item': 'dress'
}]
_DATA_CONSENT = [{
'gclid': '1',
'conversion_timestamp': '2021-11-20 12:34:56 UTC',
'conversion_value': 10.0,
'conversion_date': '2021-11-20',
'conversion_item': 'dress'
}]
_DATA_CONSENT_MULTI = [
{
'gclid': '1',
'conversion_timestamp': '2021-11-20 12:34:56 UTC',
'conversion_value': 10.0,
'conversion_date': '2021-11-20',
'conversion_item': 'dress'
},
{
'gclid': '2',
'conversion_timestamp': '2021-11-20 12:34:56 UTC',
'conversion_value': 10.0,
'conversion_date': '2021-11-20',
'conversion_item': 'dress'
},
]
_PIPELINE_RUN_DATE = '2021-11-20'
_PROJECT = 'cocoa_test'
_LOCATION = 'EU'
_TABLE_CONSENT = 'table_consent'
_TABLE_NOCONSENT = 'table_noconsent'
_CONVERSION_COLUMN = 'conversion_value'
_ID_COLUMNS = ['gclid', 'conversion_timestamp']
_DATE_COLUMN = 'conversion_date'
_DROP_COLUMNS = []
_NON_DUMMY_COLUMNS = _ID_COLUMNS
def _fake_load_data_from_bq(table_name: str, *args, **kwargs) -> pd.DataFrame: # Patching method so pylint: disable=unused-argument
if table_name == 'table_consent':
return pd.DataFrame.from_records(_DATA_CONSENT)
elif table_name == 'table_consent_multi':
return pd.DataFrame.from_records(_DATA_CONSENT_MULTI)
elif table_name == 'table_noconsent':
return pd.DataFrame.from_records(_DATA_NOCONSENT)
else:
return pd.DataFrame([])
@dataclasses.dataclass(frozen=True)
class RuntimeParam:
value: any
accessible: bool = True
def get(self):
return self.value
def is_accessible(self):
return self.accessible
class PipelineTest(parameterized.TestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
# Replace network calls to BigQuery with a local fake reply
pipeline._load_data_from_bq = _fake_load_data_from_bq
@parameterized.named_parameters(
dict(
testcase_name='_completely_when_single_nearest_neighbor',
number_nearest_neighbors=1,
table_consent='table_consent',
expected_output=20.0),
dict(
testcase_name='_partially_when_multiple_nearest_neighbor',
number_nearest_neighbors=2,
table_consent='table_consent_multi',
expected_output=10.0))
def test_conversion_adjustments_value_assigned(self,
number_nearest_neighbors: int,
table_consent: str,
expected_output: float):
with beam.Pipeline(beam.runners.direct.DirectRunner()) as p:
date_to_process = (
p | 'Process date' >> beam.Create(
[datetime.date.fromisoformat(_PIPELINE_RUN_DATE)]))
adjustments = (
date_to_process
| beam.ParDo(
pipeline.ConversionAdjustments(
number_nearest_neighbors=RuntimeParam(
number_nearest_neighbors),
radius=RuntimeParam(None),
percentile=RuntimeParam(None),
metric=RuntimeParam('manhattan'),
project=_PROJECT,
location=_LOCATION,
table_consent=table_consent,
table_noconsent=_TABLE_NOCONSENT,
conversion_column=_CONVERSION_COLUMN,
id_columns=_ID_COLUMNS,
date_column=_DATE_COLUMN,
drop_columns=_DROP_COLUMNS,
non_dummy_columns=_NON_DUMMY_COLUMNS)))
adjusted_conversion_value = (
adjustments
|
'Select single row' >> beam.Map(lambda x: x[1][x[1]['gclid'] == '1'])
| 'Calculate conversion value' >>
beam.Map(lambda x: x['adjusted_conversion'].sum()))
assert_that(adjusted_conversion_value, equal_to([expected_output]))
if __name__ == '__main__':
absltest.main()