From 2d6aa629921bab06c1e233373a00247007c95c1f Mon Sep 17 00:00:00 2001 From: Cristian Garcia Date: Tue, 24 Sep 2024 21:49:17 +0200 Subject: [PATCH] [nnx] revive TrainState toy example --- examples/nnx_toy_examples/03_train_state.py | 123 ++++++++++++++++++++ 1 file changed, 123 insertions(+) create mode 100644 examples/nnx_toy_examples/03_train_state.py diff --git a/examples/nnx_toy_examples/03_train_state.py b/examples/nnx_toy_examples/03_train_state.py new file mode 100644 index 0000000000..c67ef8204d --- /dev/null +++ b/examples/nnx_toy_examples/03_train_state.py @@ -0,0 +1,123 @@ +# Copyright 2024 The Flax Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# %% +import jax +import jax.numpy as jnp +import matplotlib.pyplot as plt +import numpy as np +import optax + +from flax import nnx +from flax.training import train_state + +X = np.linspace(0, 1, 100)[:, None] +Y = 0.8 * X**2 + 0.1 + np.random.normal(0, 0.1, size=X.shape) + + +def dataset(batch_size): + while True: + idx = np.random.choice(len(X), size=batch_size) + yield X[idx], Y[idx] + + +class Linear(nnx.Module): + def __init__(self, din: int, dout: int, *, rngs: nnx.Rngs): + self.w = nnx.Param(jax.random.uniform(rngs.params(), (din, dout))) + self.b = nnx.Param(jnp.zeros((dout,))) + + def __call__(self, x): + return x @ self.w.value + self.b.value + + +class Count(nnx.Variable[nnx.A]): + pass + + +class MLP(nnx.Module): + def __init__(self, din, dhidden, dout, *, rngs: nnx.Rngs): + self.count = Count(jnp.array(0)) + self.linear1 = Linear(din, dhidden, rngs=rngs) + self.linear2 = Linear(dhidden, dout, rngs=rngs) + + def __call__(self, x): + self.count.value += 1 + x = self.linear1(x) + x = jax.nn.relu(x) + x = self.linear2(x) + return x + +class TrainState(train_state.TrainState): + counts: nnx.State + graphdef: nnx.GraphDef + +model = MLP(din=1, dhidden=32, dout=1, rngs=nnx.Rngs(0)) +graphdef, params, counts = nnx.split(model, nnx.Param, Count) + +state = TrainState.create( + apply_fn=None, + graphdef=graphdef, + params=params, + tx=optax.sgd(0.1), + counts=counts, +) +del params, counts + + +@jax.jit +def train_step(state: TrainState, batch): + x, y = batch + + def loss_fn(params): + model = nnx.merge(state.graphdef, params, state.counts) + y_pred = model(x) + loss = jnp.mean((y - y_pred) ** 2) + counts = nnx.state(model, Count) + return loss, counts + + grads, counts = jax.grad(loss_fn, has_aux=True)(state.params) + # sdg update + state = state.apply_gradients(grads=grads, counts=counts) + + return state + + +@jax.jit +def test_step(state: nnx.TrainState[MLP], batch): + x, y = batch + model = nnx.merge(state.graphdef, state.params, state.counts) + y_pred = model(x) + loss = jnp.mean((y - y_pred) ** 2) + return {'loss': loss} + + +total_steps = 10_000 +for step, batch in enumerate(dataset(32)): + state = train_step(state, batch) + + if step % 1000 == 0: + logs = test_step(state, (X, Y)) + print(f"step: {step}, loss: {logs['loss']}") + + if step >= total_steps - 1: + break + +model = nnx.merge(state.graphdef, state.params, state.counts) +print('times called:', model.count.value) + +y_pred = model(X) + +plt.scatter(X, Y, color='blue') +plt.plot(X, y_pred, color='black') +plt.show()