This repository has been archived by the owner on Dec 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 40
/
utils.py
270 lines (211 loc) · 8.01 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#!/usr/bin/python
#
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Util functions for representation learning.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import csv
import re
import numpy as np
import tensorflow as tf
INPUT_DATA_STR = "input_data"
IS_TRAINING_STR = "is_training"
REPR_PREFIX_STR = "representation_"
TAGS_IS_TRAINING = ["is_training"]
def adaptive_pool(inp, num_target_dimensions=9000, mode="adaptive_max"):
"""Adaptive pooling layer.
This layer performs adaptive pooling, such that the total
dimensionality of output is not bigger than num_target_dimension
Args:
inp: input tensor
num_target_dimensions: maximum number of output dimensions
mode: one of {"adaptive_max", "adaptive_avg", "max", "avg"}
Returns:
Result of the pooling operation
Raises:
ValueError: mode is unexpected.
"""
size, _, k = inp.get_shape().as_list()[1:]
if mode in ["adaptive_max", "adaptive_avg"]:
if mode == "adaptive_max":
pool_fn = tf.nn.fractional_max_pool
else:
pool_fn = tf.nn.fractional_avg_pool
# Find the optimal target output tensor size
target_size = (num_target_dimensions / float(k)) ** 0.5
if (abs(num_target_dimensions - k * np.floor(target_size) ** 2) <
abs(num_target_dimensions - k * np.ceil(target_size) ** 2)):
target_size = max(np.floor(target_size), 1.0)
else:
target_size = max(np.ceil(target_size), 1.0)
# Get optimal stride. Subtract epsilon to ensure correct rounding in
# pool_fn.
stride = size / target_size - 1.0e-5
# Make sure that the stride is valid
stride = max(stride, 1)
stride = min(stride, size)
result = pool_fn(inp, [1, stride, stride, 1])[0]
elif mode in ["max", "avg"]:
if mode == "max":
pool_fn = tf.contrib.layers.max_pool2d
else:
pool_fn = tf.contrib.layers.avg_pool2d
total_size = float(np.prod(inp.get_shape()[1:].as_list()))
stride = int(np.ceil(np.sqrt(total_size / num_target_dimensions)))
stride = min(max(1, stride), size)
result = pool_fn(inp, kernel_size=stride, stride=stride)
else:
raise ValueError("Not supported %s pool." % mode)
return result
def append_multiple_rows_to_csv(dictionaries, csv_path):
"""Writes multiples rows to csv file from a list of dictionaries.
Args:
dictionaries: a list of dictionaries, mapping from csv header to value.
csv_path: path to the result csv file.
"""
keys = set([])
for d in dictionaries:
keys.update(d.keys())
if not tf.gfile.Exists(csv_path):
with tf.gfile.Open(csv_path, "w") as f:
writer = csv.DictWriter(f, sorted(keys))
writer.writeheader()
f.flush()
with tf.gfile.Open(csv_path, "a") as f:
writer = csv.DictWriter(f, sorted(keys))
writer.writerows(dictionaries)
f.flush()
def concat_dicts(dict_list):
"""Given a list of dicts merges them into a single dict.
This function takes a list of dictionaries as an input and then merges all
these dictionaries into a single dictionary by concatenating the values
(along the first axis) that correspond to the same key.
Args:
dict_list: list of dictionaries
Returns:
d: merged dictionary
"""
d = collections.defaultdict(list)
for e in dict_list:
for k, v in e.items():
d[k].append(v)
for k in d:
d[k] = tf.concat(d[k], axis=0)
return d
def str2intlist(s, repeats_if_single=None):
"""Parse a config's "1,2,3"-style string into a list of ints.
Args:
s: The string to be parsed, or possibly already an int.
repeats_if_single: If s is already an int or is a single element list,
repeat it this many times to create the list.
Returns:
A list of integers based on `s`.
"""
if isinstance(s, int):
result = [s]
else:
result = [int(i.strip()) if i != "None" else None
for i in s.split(",")]
if repeats_if_single is not None and len(result) == 1:
result *= repeats_if_single
return result
def tf_apply_to_image_or_images(fn, image_or_images):
"""Applies a function to a single image or each image in a batch of them.
Args:
fn: the function to apply, receives an image, returns an image.
image_or_images: Either a single image, or a batch of images.
Returns:
The result of applying the function to the image or batch of images.
Raises:
ValueError: if the input is not of rank 3 or 4.
"""
static_rank = len(image_or_images.get_shape().as_list())
if static_rank == 3: # A single image: HWC
return fn(image_or_images)
elif static_rank == 4: # A batch of images: BHWC
return tf.map_fn(fn, image_or_images)
elif static_rank > 4: # A batch of images: ...HWC
input_shape = tf.shape(image_or_images)
h, w, c = image_or_images.get_shape().as_list()[-3:]
image_or_images = tf.reshape(image_or_images, [-1, h, w, c])
image_or_images = tf.map_fn(fn, image_or_images)
return tf.reshape(image_or_images, input_shape)
else:
raise ValueError("Unsupported image rank: %d" % static_rank)
def tf_apply_with_probability(p, fn, x):
"""Apply function `fn` to input `x` randomly `p` percent of the time."""
return tf.cond(
tf.less(tf.random_uniform([], minval=0, maxval=1, dtype=tf.float32), p),
lambda: fn(x),
lambda: x)
def expand_glob(glob_patterns):
checkpoints = []
for pattern in glob_patterns:
checkpoints.extend(tf.gfile.Glob(pattern))
assert checkpoints, "There are no checkpoints in " + str(glob_patterns)
return checkpoints
def get_latest_hub_per_task(hub_module_paths):
"""Get latest hub module for each task.
The hub module path should match format ".*/hub/[0-9]*/module/.*".
Example usage:
get_latest_hub_per_task(expand_glob(["/cns/el-d/home/dune/representation/"
"xzhai/1899361/*/export/hub/*/module/"]))
returns 4 latest hub module from 4 tasks respectivley.
Args:
hub_module_paths: a list of hub module paths.
Returns:
A list of latest hub modules for each task.
"""
task_to_path = {}
for path in hub_module_paths:
task_name, module_name = path.split("/hub/")
timestamp = int(re.findall(r"([0-9]*)/module", module_name)[0])
current_path = task_to_path.get(task_name, "0/module")
current_timestamp = int(re.findall(r"([0-9]*)/module", current_path)[0])
if current_timestamp < timestamp:
task_to_path[task_name] = path
return sorted(task_to_path.values())
def get_classification_metrics(tensor_names):
"""Gets classification eval metric on input logits and labels.
Args:
tensor_names: a list of tensor names for _metrics input tensors.
Returns:
A function computes the metric result, from input logits and labels.
"""
def _top_k_accuracy(k, labels, logits):
in_top_k = tf.nn.in_top_k(predictions=logits, targets=labels, k=k)
return tf.metrics.mean(tf.cast(in_top_k, tf.float32))
def _metrics(labels, *tensors):
"""Computes the metric from logits and labels.
Args:
labels: ground truth labels.
*tensors: tensors to be evaluated.
Returns:
Result dict mapping from the metric name to the list of result tensor and
update_op used by tf.metrics.
"""
metrics = {}
assert len(tensor_names) == len(tensors), "Names must match tensors."
for i in range(len(tensors)):
tensor = tensors[i]
name = tensor_names[i]
for k in (1, 5):
metrics["top%d_accuracy_%s" % (k, name)] = _top_k_accuracy(
k, labels, tensor)
return metrics
return _metrics