From b604f92134cd83aebd20224aa99722bdaf731192 Mon Sep 17 00:00:00 2001 From: Richard Stotz Date: Fri, 18 Nov 2022 08:34:48 -0800 Subject: [PATCH] Release TF-DF 1.1.0 and YDF 1.2.0 PiperOrigin-RevId: 489482890 --- CHANGELOG.md | 2 +- documentation/learners.md | 49 +++++++++++++++++++++++++++ documentation/rtd/hyper_parameters.md | 49 +++++++++++++++++++++++++++ 3 files changed, 99 insertions(+), 1 deletion(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index f020ee74..65d21dbc 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,6 +1,6 @@ # Changelog -## HEAD +## 1.2.0 - 2022-11-18 ### Features diff --git a/documentation/learners.md b/documentation/learners.md index 16ce0f74..9d926c95 100644 --- a/documentation/learners.md +++ b/documentation/learners.md @@ -1251,3 +1251,52 @@ learner hyper-parameters. - If true, workers will print training logs. + +## HYPERPARAMETER_OPTIMIZER + + + +### Training configuration + +Following are the protobuffer definitions used in TrainingConfiguration to set +learner hyper-parameters. + +- learner/abstract_learner.proto + +### Generic Hyper-parameters + +#### [maximum_model_size_in_memory_in_bytes](../yggdrasil_decision_forests/learner/abstract_learner.proto?q=symbol:maximum_model_size_in_memory_in_bytes) + +- **Type:** Real **Default:** -1 + +- Limit the size of the model when stored in ram. Different algorithms can + enforce this limit differently. Note that when models are compiled into an + inference, the size of the inference engine is generally much smaller than + the original model. + +#### [maximum_training_duration_seconds](../yggdrasil_decision_forests/learner/abstract_learner.proto?q=symbol:maximum_training_duration_seconds) + +- **Type:** Real **Default:** -1 + +- Maximum training duration of the model expressed in seconds. Each learning + algorithm is free to use this parameter at it sees fit. Enabling maximum + training duration makes the model training non-deterministic. + +#### [pure_serving_model](../yggdrasil_decision_forests/learner/abstract_learner.proto?q=symbol:pure_serving_model) + +- **Type:** Categorical **Default:** false **Possible values:** true, false + +- Clear the model from any information that is not required for model serving. + This includes debugging, model interpretation and other meta-data. The size + of the serialized model can be reduced significatively (50% model size + reduction is common). This parameter has no impact on the quality, serving + speed or RAM usage of model serving. + +#### [random_seed](../yggdrasil_decision_forests/learner/abstract_learner.proto?q=symbol:random_seed) + +- **Type:** Integer **Default:** 123456 + +- Random seed for the training of the model. Learners are expected to be + deterministic by the random seed. + + diff --git a/documentation/rtd/hyper_parameters.md b/documentation/rtd/hyper_parameters.md index b1e09a78..bad63559 100644 --- a/documentation/rtd/hyper_parameters.md +++ b/documentation/rtd/hyper_parameters.md @@ -1269,3 +1269,52 @@ learner hyper-parameters. - If true, workers will print training logs. + +## HYPERPARAMETER_OPTIMIZER + + + +### Training configuration + +Following are the protobuffer definitions used in TrainingConfiguration to set +learner hyper-parameters. + +- learner/abstract_learner.proto + +### Generic Hyper-parameters + +#### [maximum_model_size_in_memory_in_bytes](https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/abstract_learner.proto) + +- **Type:** Real **Default:** -1 + +- Limit the size of the model when stored in ram. Different algorithms can + enforce this limit differently. Note that when models are compiled into an + inference, the size of the inference engine is generally much smaller than + the original model. + +#### [maximum_training_duration_seconds](https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/abstract_learner.proto) + +- **Type:** Real **Default:** -1 + +- Maximum training duration of the model expressed in seconds. Each learning + algorithm is free to use this parameter at it sees fit. Enabling maximum + training duration makes the model training non-deterministic. + +#### [pure_serving_model](https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/abstract_learner.proto) + +- **Type:** Categorical **Default:** false **Possible values:** true, false + +- Clear the model from any information that is not required for model serving. + This includes debugging, model interpretation and other meta-data. The size + of the serialized model can be reduced significatively (50% model size + reduction is common). This parameter has no impact on the quality, serving + speed or RAM usage of model serving. + +#### [random_seed](https://github.com/google/yggdrasil-decision-forests/blob/main/yggdrasil_decision_forests/learner/abstract_learner.proto) + +- **Type:** Integer **Default:** 123456 + +- Random seed for the training of the model. Learners are expected to be + deterministic by the random seed. + +