This repository has been archived by the owner on Jul 20, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdeploy-model-custom-trained-model.js
100 lines (88 loc) · 3.3 KB
/
deploy-model-custom-trained-model.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
function main(
modelId,
deployedModelDisplayName,
endpointId,
project,
location = 'us-central1'
) {
// [START aiplatform_deploy_model_custom_trained_model_sample]
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const modelId = "YOUR_MODEL_ID";
// const endpointId = 'YOUR_ENDPOINT_ID';
// const deployedModelDisplayName = 'YOUR_DEPLOYED_MODEL_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const modelName = `projects/${project}/locations/${location}/models/${modelId}`;
const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;
// Imports the Google Cloud Endpoint Service Client library
const {EndpointServiceClient} = require('@google-cloud/aiplatform');
// Specifies the location of the api endpoint:
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const endpointServiceClient = new EndpointServiceClient(clientOptions);
async function deployModelCustomTrainedModel() {
// Configure the parent resource
// key '0' assigns traffic for the newly deployed model
// Traffic percentage values must add up to 100
// Leave dictionary empty if endpoint should not accept any traffic
const trafficSplit = {0: 100};
const deployedModel = {
// format: 'projects/{project}/locations/{location}/models/{model}'
model: modelName,
displayName: deployedModelDisplayName,
// `dedicatedResources` must be used for non-AutoML models
dedicatedResources: {
minReplicaCount: 1,
machineSpec: {
machineType: 'n1-standard-2',
// Accelerators can be used only if the model specifies a GPU image.
// acceleratorType: 'NVIDIA_TESLA_K80',
// acceleratorCount: 1,
},
},
};
const request = {
endpoint,
deployedModel,
trafficSplit,
};
// Get and print out a list of all the endpoints for this resource
const [response] = await endpointServiceClient.deployModel(request);
console.log(`Long running operation : ${response.name}`);
// Wait for operation to complete
await response.promise();
const result = response.result;
console.log('Deploy model response');
const modelDeployed = result.deployedModel;
console.log(`\t\tId : ${modelDeployed.id}`);
console.log(modelDeployed);
}
deployModelCustomTrainedModel();
// [END aiplatform_deploy_model_custom_trained_model_sample]
}
process.on('unhandledRejection', err => {
console.error(err.message);
process.exitCode = 1;
});
main(...process.argv.slice(2));