-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_test_srmd.py
233 lines (184 loc) · 8.85 KB
/
main_test_srmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os.path
import logging
import re
import numpy as np
from collections import OrderedDict
from scipy.io import loadmat
import torch
from utils import utils_deblur
from utils import utils_sisr as sr
from utils import utils_logger
from utils import utils_image as util
from utils import utils_model
'''
Spyder (Python 3.6)
PyTorch 1.1.0
Windows 10 or Linux
Kai Zhang (cskaizhang@gmail.com)
github: https://github.com/cszn/KAIR
https://github.com/cszn/SRMD
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
% If you have any question, please feel free to contact with me.
% Kai Zhang (e-mail: cskaizhang@gmail.com; github: https://github.com/cszn)
by Kai Zhang (12/Dec./2019)
'''
"""
# --------------------------------------------
|--model_zoo # model_zoo
|--srmdnf_x2 # model_name, for noise-free LR image SR
|--srmdnf_x3
|--srmdnf_x4
|--srmd_x2 # model_name, for noisy LR image
|--srmd_x3
|--srmd_x4
|--testset # testsets
|--set5 # testset_name
|--srbsd68
|--results # results
|--set5_srmdnf_x2 # result_name = testset_name + '_' + model_name
|--set5_srmdnf_x3
|--set5_srmdnf_x4
|--set5_srmd_x2
|--srbsd68_srmd_x2
# --------------------------------------------
"""
def main():
# ----------------------------------------
# Preparation
# ----------------------------------------
noise_level_img = 0 # default: 0, noise level for LR image
noise_level_model = noise_level_img # noise level for model
model_name = 'srmdnf_x4' # 'srmd_x2' | 'srmd_x3' | 'srmd_x4' | 'srmdnf_x2' | 'srmdnf_x3' | 'srmdnf_x4'
testset_name = 'set5' # test set, 'set5' | 'srbsd68'
sf = [int(s) for s in re.findall(r'\d+', model_name)][0] # scale factor
x8 = False # default: False, x8 to boost performance
need_degradation = True # default: True, use degradation model to generate LR image
show_img = False # default: False
srmd_pca_path = os.path.join('kernels', 'srmd_pca_matlab.mat')
task_current = 'sr' # 'dn' for denoising | 'sr' for super-resolution
n_channels = 3 # fixed
in_nc = 18 if 'nf' in model_name else 19
nc = 128 # fixed, number of channels
nb = 12 # fixed, number of conv layers
model_pool = 'model_zoo' # fixed
testsets = 'testsets' # fixed
results = 'results' # fixed
result_name = testset_name + '_' + model_name
border = sf if task_current == 'sr' else 0 # shave boader to calculate PSNR and SSIM
model_path = os.path.join(model_pool, model_name+'.pth')
# ----------------------------------------
# L_path, E_path, H_path
# ----------------------------------------
L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images
H_path = L_path # H_path, for High-quality images
E_path = os.path.join(results, result_name) # E_path, for Estimated images
util.mkdir(E_path)
if H_path == L_path:
need_degradation = True
logger_name = result_name
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
logger = logging.getLogger(logger_name)
need_H = True if H_path is not None else False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
from models.network_srmd import SRMD as net
model = net(in_nc=in_nc, out_nc=n_channels, nc=nc, nb=nb, upscale=sf, act_mode='R', upsample_mode='pixelshuffle')
model.load_state_dict(torch.load(model_path), strict=False)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
logger.info('Model path: {:s}'.format(model_path))
number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
logger.info('Params number: {}'.format(number_parameters))
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
logger.info('model_name:{}, model sigma:{}, image sigma:{}'.format(model_name, noise_level_img, noise_level_model))
logger.info(L_path)
L_paths = util.get_image_paths(L_path)
H_paths = util.get_image_paths(H_path) if need_H else None
# ----------------------------------------
# kernel and PCA reduced feature
# ----------------------------------------
# kernel = sr.anisotropic_Gaussian(ksize=15, theta=np.pi, l1=4, l2=4)
kernel = utils_deblur.fspecial('gaussian', 15, 0.01) # Gaussian kernel, delta kernel 0.01
P = loadmat(srmd_pca_path)['P']
degradation_vector = np.dot(P, np.reshape(kernel, (-1), order="F"))
if 'nf' not in model_name: # noise-free SR
degradation_vector = np.append(degradation_vector, noise_level_model/255.)
degradation_vector = torch.from_numpy(degradation_vector).view(1, -1, 1, 1).float()
for idx, img in enumerate(L_paths):
# ------------------------------------
# (1) img_L
# ------------------------------------
img_name, ext = os.path.splitext(os.path.basename(img))
# logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
img_L = util.imread_uint(img, n_channels=n_channels)
img_L = util.uint2single(img_L)
# degradation process, blur + bicubic downsampling + Gaussian noise
if need_degradation:
img_L = util.modcrop(img_L, sf)
img_L = sr.srmd_degradation(img_L, kernel, sf) # equivalent to bicubic degradation if kernel is a delta kernel
np.random.seed(seed=0) # for reproducibility
img_L += np.random.normal(0, noise_level_img/255., img_L.shape)
util.imshow(util.single2uint(img_L), title='LR image with noise level {}'.format(noise_level_img)) if show_img else None
img_L = util.single2tensor4(img_L)
degradation_map = degradation_vector.repeat(1, 1, img_L.size(-2), img_L.size(-1))
img_L = torch.cat((img_L, degradation_map), dim=1)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
if not x8:
img_E = model(img_L)
else:
img_E = utils_model.test_mode(model, img_L, mode=3, sf=sf)
img_E = util.tensor2uint(img_E)
if need_H:
# --------------------------------
# (3) img_H
# --------------------------------
img_H = util.imread_uint(H_paths[idx], n_channels=n_channels)
img_H = img_H.squeeze()
img_H = util.modcrop(img_H, sf)
# --------------------------------
# PSNR and SSIM
# --------------------------------
psnr = util.calculate_psnr(img_E, img_H, border=border)
ssim = util.calculate_ssim(img_E, img_H, border=border)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(img_name+ext, psnr, ssim))
util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None
if np.ndim(img_H) == 3: # RGB image
img_E_y = util.rgb2ycbcr(img_E, only_y=True)
img_H_y = util.rgb2ycbcr(img_H, only_y=True)
psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border)
ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border)
test_results['psnr_y'].append(psnr_y)
test_results['ssim_y'].append(ssim_y)
# ------------------------------------
# save results
# ------------------------------------
util.imsave(img_E, os.path.join(E_path, img_name+'.png'))
if need_H:
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
logger.info('Average PSNR/SSIM(RGB) - {} - x{} --PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, sf, ave_psnr, ave_ssim))
if np.ndim(img_H) == 3:
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
logger.info('Average PSNR/SSIM( Y ) - {} - x{} - PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, sf, ave_psnr_y, ave_ssim_y))
if __name__ == '__main__':
main()