-
Notifications
You must be signed in to change notification settings - Fork 15
/
burstsr_dataset.py
420 lines (307 loc) · 15.2 KB
/
burstsr_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import os
import torch
import cv2
import numpy as np
import pickle as pkl
import torch.nn.functional as F
import random
class SamsungRAWImage:
@staticmethod
def load(path):
im_raw = cv2.imread('{}/im_raw.png'.format(path), cv2.IMREAD_UNCHANGED)
im_raw = np.transpose(im_raw, (2, 0, 1)).astype(np.int16)
im_raw = torch.from_numpy(im_raw)
meta_data = pkl.load(open('{}/meta_info.pkl'.format(path), "rb", -1))
return SamsungRAWImage(im_raw, meta_data['black_level'], meta_data['cam_wb'],
meta_data['daylight_wb'], meta_data['color_matrix'], meta_data['exif_data'],
meta_data.get('crop_info', None), meta_data.get('im_preview', None))
def __init__(self, im_raw, black_level, cam_wb, daylight_wb, color_matrix, exif_data, crop_info=None,
im_preview=None):
self.im_raw = im_raw
self.black_level = black_level
self.cam_wb = cam_wb
self.daylight_wb = daylight_wb
self.color_matrix = color_matrix
self.exif_data = exif_data
self.crop_info = crop_info
self.im_preview = im_preview
self.norm_factor = 1023.0
def get_all_meta_data(self):
return {'black_level': self.black_level, 'cam_wb': self.cam_wb, 'daylight_wb': self.daylight_wb,
'color_matrix': self.color_matrix.tolist()}
def get_exposure_time(self):
return self.exif_data['Image ExposureTime'].values[0].decimal()
def get_noise_profile(self):
noise = self.exif_data['Image Tag 0xC761'].values
noise = [n[0] for n in noise]
noise = np.array(noise).reshape(3, 2)
return noise
def get_f_number(self):
return self.exif_data['Image FNumber'].values[0].decimal()
def get_iso(self):
return self.exif_data['Image ISOSpeedRatings'].values[0]
def get_image_data(self, substract_black_level=False, white_balance=False, normalize=False):
im_raw = self.im_raw.float()
if substract_black_level:
im_raw = im_raw - torch.tensor(self.black_level).view(4, 1, 1)
if white_balance:
im_raw = im_raw * torch.tensor(self.cam_wb).view(4, 1, 1)
if normalize:
im_raw = im_raw / self.norm_factor
return im_raw
def shape(self):
shape = (4, self.im_raw.shape[1], self.im_raw.shape[2])
return shape
def crop_image(self, r1, r2, c1, c2):
self.im_raw = self.im_raw[:, r1:r2, c1:c2]
def get_crop(self, r1, r2, c1, c2):
im_raw = self.im_raw[:, r1:r2, c1:c2]
if self.im_preview is not None:
im_preview = self.im_preview[2*r1:2*r2, 2*c1:2*c2]
else:
im_preview = None
return SamsungRAWImage(im_raw, self.black_level, self.cam_wb, self.daylight_wb, self.color_matrix,
self.exif_data, im_preview=im_preview)
def postprocess(self, return_np=True, norm_factor=None):
# Convert to rgb
im = torch.from_numpy(self.im_raw.astype(np.float32))
im = (im - torch.tensor(self.black_level).view(4, 1, 1)) * torch.tensor(self.cam_wb).view(4, 1, 1)
if norm_factor is None:
im = im / im.max()
else:
im = im / norm_factor
im = torch.stack((im[0], (im[1] + im[2])/2, im[3]), dim=0)
im_out = im.clamp(0.0, 1.0)
if return_np:
im_out = im_out.permute(1, 2, 0).numpy() * 255.0
im_out = im_out.astype(np.uint8)
return im_out
class CanonImage:
@staticmethod
def load(path):
im_raw = cv2.imread('{}/im_raw.png'.format(path), cv2.IMREAD_UNCHANGED)
im_raw = np.transpose(im_raw, (2, 0, 1)).astype(np.int16)
im_raw = torch.from_numpy(im_raw)
meta_data = pkl.load(open('{}/meta_info.pkl'.format(path), "rb", -1))
return CanonImage(im_raw.float(), meta_data['black_level'], meta_data['cam_wb'],
meta_data['daylight_wb'], meta_data['rgb_xyz_matrix'], meta_data['exif_data'],
meta_data.get('crop_info', None))
def __init__(self, im_raw, black_level, cam_wb, daylight_wb, rgb_xyz_matrix, exif_data, crop_info=None):
super(CanonImage, self).__init__()
self.im_raw = im_raw
if len(black_level) == 4:
black_level = [black_level[0], black_level[1], black_level[3]]
self.black_level = black_level
if len(cam_wb) == 4:
cam_wb = [cam_wb[0], cam_wb[1], cam_wb[3]]
self.cam_wb = cam_wb
if len(daylight_wb) == 4:
daylight_wb = [daylight_wb[0], daylight_wb[1], daylight_wb[3]]
self.daylight_wb = daylight_wb
self.rgb_xyz_matrix = rgb_xyz_matrix
self.xyz_srgb_matrix = torch.tensor([3.2404542, -1.5371385, -0.4985314,
-0.9692660, 1.8760108, 0.0415560,
0.0556434, -0.2040259, 1.0572252]).view(3, 3)
self.exif_data = exif_data
self.crop_info = crop_info
self.norm_factor = 16383
def shape(self):
shape = (3, self.im_raw.shape[1], self.im_raw.shape[2])
return shape
def get_all_meta_data(self):
return {'black_level': self.black_level, 'cam_wb': self.cam_wb, 'daylight_wb': self.daylight_wb,
'rgb_xyz_matrix': self.rgb_xyz_matrix.tolist(), 'crop_info': self.crop_info,
'norm_factor': self.norm_factor}
def get_exposure_time(self):
return self.exif_data['EXIF ExposureTime'].values[0].decimal()
def get_f_number(self):
return self.exif_data['EXIF FNumber'].values[0].decimal()
def get_iso(self):
return self.exif_data['EXIF ISOSpeedRatings'].values[0]
def get_image_data(self, substract_black_level=False, white_balance=False, normalize=False):
im_raw = self.im_raw.float()
if substract_black_level:
im_raw = im_raw - torch.tensor(self.black_level).view(3, 1, 1)
if white_balance:
im_raw = im_raw * torch.tensor(self.cam_wb).view(3, 1, 1) / 1024.0
if normalize:
im_raw = im_raw / self.norm_factor
return im_raw
def set_image_data(self, im_data):
self.im_raw = im_data
def crop_image(self, r1, r2, c1, c2):
self.im_raw = self.im_raw[:, r1:r2, c1:c2]
def get_crop(self, r1, r2, c1, c2):
im_raw = self.im_raw[:, r1:r2, c1:c2]
return CanonImage(im_raw, self.black_level, self.cam_wb, self.daylight_wb, self.rgb_xyz_matrix,
self.exif_data, self.crop_info)
def set_crop_info(self, crop_info):
self.crop_info = crop_info
def resize(self, size=None, scale_factor=None):
self.im_raw = F.interpolate(self.im_raw.unsqueeze(0), size=size, scale_factor=scale_factor,
mode='bilinear').squeeze(0)
def postprocess(self, return_np=True):
# Convert to rgb
im = self.im_raw
im = (im - torch.tensor(self.black_level).view(3, 1, 1)).float() * torch.tensor(self.cam_wb).view(3, 1, 1)
im_out = im / im.max()
im_out = im_out.clamp(0.0, 1.0)
if return_np:
im_out = im_out.permute(1, 2, 0).numpy() * 255.0
im_out = im_out.astype(np.uint8)
return im_out
def load_txt(path):
with open(path, 'r') as fh:
out = [d.rstrip() for d in fh.readlines()]
return out
class BurstSRDataset(torch.utils.data.Dataset):
""" Real-world burst super-resolution dataset. """
def __init__(self, root, burst_size=8, crop_sz=80, center_crop=False, random_flip=False, split='train'):
"""
args:
root : path of the root directory
burst_size : Burst size. Maximum allowed burst size is 14.
crop_sz: Size of the extracted crop. Maximum allowed crop size is 80
center_crop: Whether to extract a random crop, or a centered crop.
random_flip: Whether to apply random horizontal and vertical flip
split: Can be 'train' or 'val'
"""
assert burst_size <= 14, 'burst_sz must be less than or equal to 14'
assert crop_sz <= 80, 'crop_sz must be less than or equal to 80'
assert split in ['train', 'val']
root = root + '/' + split
super().__init__()
self.burst_size = burst_size
self.crop_sz = crop_sz
self.split = split
self.center_crop = center_crop
self.random_flip = random_flip
self.root = root
self.substract_black_level = True
self.white_balance = False
self.burst_list = self._get_burst_list()
def _get_burst_list(self):
burst_list = sorted(os.listdir('{}'.format(self.root)))
return burst_list
def get_burst_info(self, burst_id):
burst_info = {'burst_size': 14, 'burst_name': self.burst_list[burst_id]}
return burst_info
def _get_raw_image(self, burst_id, im_id):
raw_image = SamsungRAWImage.load('{}/{}/samsung_{:02d}'.format(self.root, self.burst_list[burst_id], im_id))
return raw_image
def _get_gt_image(self, burst_id):
canon_im = CanonImage.load('{}/{}/canon'.format(self.root, self.burst_list[burst_id]))
return canon_im
def get_burst(self, burst_id, im_ids, info=None):
frames = [self._get_raw_image(burst_id, i) for i in im_ids]
gt = self._get_gt_image(burst_id)
if info is None:
info = self.get_burst_info(burst_id)
return frames, gt, info
def _sample_images(self):
burst_size = 14
ids = random.sample(range(1, burst_size), k=self.burst_size - 1)
ids = [0, ] + ids
return ids
def __len__(self):
return len(self.burst_list)
def __getitem__(self, index):
# Sample the images in the burst, in case a burst_size < 14 is used.
im_ids = self._sample_images()
# Read the burst images along with HR ground truth
frames, gt, meta_info = self.get_burst(index, im_ids)
# Extract crop if needed
if frames[0].shape()[-1] != self.crop_sz:
if getattr(self, 'center_crop', False):
r1 = (frames[0].shape()[-2] - self.crop_sz) // 2
c1 = (frames[0].shape()[-1] - self.crop_sz) // 2
else:
r1 = random.randint(0, frames[0].shape()[-2] - self.crop_sz)
c1 = random.randint(0, frames[0].shape()[-1] - self.crop_sz)
r2 = r1 + self.crop_sz
c2 = c1 + self.crop_sz
scale_factor = gt.shape()[-1] // frames[0].shape()[-1]
frames = [im.get_crop(r1, r2, c1, c2) for im in frames]
gt = gt.get_crop(scale_factor * r1, scale_factor * r2, scale_factor * c1, scale_factor * c2)
# Load the RAW image data
burst_image_data = [im.get_image_data(normalize=True, substract_black_level=self.substract_black_level,
white_balance=self.white_balance) for im in frames]
# Convert to tensor
gt_image_data = gt.get_image_data(normalize=True, white_balance=self.white_balance,
substract_black_level=self.substract_black_level)
if self.random_flip:
burst_image_data = [flatten_raw_image(im) for im in burst_image_data]
pad = [0, 0, 0, 0]
if random.random() > 0.5:
burst_image_data = [im.flip([1, ])[:, 1:-1].contiguous() for im in burst_image_data]
gt_image_data = gt_image_data.flip([2, ])[:, :, 2:-2].contiguous()
pad[1] = 1
if random.random() > 0.5:
burst_image_data = [im.flip([0, ])[1:-1, :].contiguous() for im in burst_image_data]
gt_image_data = gt_image_data.flip([1, ])[:, 2:-2, :].contiguous()
pad[3] = 1
burst_image_data = [pack_raw_image(im) for im in burst_image_data]
burst_image_data = [F.pad(im.unsqueeze(0), pad, mode='replicate').squeeze(0) for im in burst_image_data]
gt_image_data = F.pad(gt_image_data.unsqueeze(0), [4 * p for p in pad], mode='replicate').squeeze(0)
burst_image_meta_info = frames[0].get_all_meta_data()
burst_image_meta_info['black_level_subtracted'] = self.substract_black_level
burst_image_meta_info['while_balance_applied'] = self.white_balance
burst_image_meta_info['norm_factor'] = frames[0].norm_factor
gt_image_meta_info = gt.get_all_meta_data()
burst = torch.stack(burst_image_data, dim=0)
burst_exposure = frames[0].get_exposure_time()
canon_exposure = gt.get_exposure_time()
burst_f_number = frames[0].get_f_number()
canon_f_number = gt.get_f_number()
burst_iso = frames[0].get_iso()
canon_iso = gt.get_iso()
# Normalize the GT image to account for differences in exposure, ISO etc
light_factor_burst = burst_exposure * burst_iso / (burst_f_number ** 2)
light_factor_canon = canon_exposure * canon_iso / (canon_f_number ** 2)
exp_scale_factor = (light_factor_burst / light_factor_canon)
gt_image_data = gt_image_data * exp_scale_factor
gt_image_meta_info['black_level_subtracted'] = self.substract_black_level
gt_image_meta_info['while_balance_applied'] = self.white_balance
gt_image_meta_info['norm_factor'] = gt.norm_factor / exp_scale_factor
burst_image_meta_info['exposure'] = burst_exposure
burst_image_meta_info['f_number'] = burst_f_number
burst_image_meta_info['iso'] = burst_iso
gt_image_meta_info['exposure'] = canon_exposure
gt_image_meta_info['f_number'] = canon_f_number
gt_image_meta_info['iso'] = canon_iso
burst = burst.float()
frame_gt = gt_image_data.float()
meta_info_burst = burst_image_meta_info
meta_info_gt = gt_image_meta_info
del meta_info_gt['crop_info']
for k, v in meta_info_gt.items():
if isinstance(v, (list, tuple)):
meta_info_gt[k] = torch.tensor(v)
for k, v in meta_info_burst.items():
if isinstance(v, (list, tuple)):
meta_info_burst[k] = torch.tensor(v)
return burst, frame_gt, meta_info_burst, meta_info_gt
def pack_raw_image(im_raw):
if isinstance(im_raw, np.ndarray):
im_out = np.zeros_like(im_raw, shape=(4, im_raw.shape[0] // 2, im_raw.shape[1] // 2))
elif isinstance(im_raw, torch.Tensor):
im_out = torch.zeros((4, im_raw.shape[0] // 2, im_raw.shape[1] // 2), dtype=im_raw.dtype)
else:
raise Exception
im_out[0, :, :] = im_raw[0::2, 0::2]
im_out[1, :, :] = im_raw[0::2, 1::2]
im_out[2, :, :] = im_raw[1::2, 0::2]
im_out[3, :, :] = im_raw[1::2, 1::2]
return im_out
def flatten_raw_image(im_raw_4ch):
if isinstance(im_raw_4ch, np.ndarray):
im_out = np.zeros_like(im_raw_4ch, shape=(im_raw_4ch.shape[1] * 2, im_raw_4ch.shape[2] * 2))
elif isinstance(im_raw_4ch, torch.Tensor):
im_out = torch.zeros((im_raw_4ch.shape[1] * 2, im_raw_4ch.shape[2] * 2), dtype=im_raw_4ch.dtype)
else:
raise Exception
im_out[0::2, 0::2] = im_raw_4ch[0, :, :]
im_out[0::2, 1::2] = im_raw_4ch[1, :, :]
im_out[1::2, 0::2] = im_raw_4ch[2, :, :]
im_out[1::2, 1::2] = im_raw_4ch[3, :, :]
return im_out