-
Notifications
You must be signed in to change notification settings - Fork 15
/
test_synthetic_bursts.py
55 lines (39 loc) · 1.89 KB
/
test_synthetic_bursts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch.nn.functional as F
import cv2
from datasets.synthetic_burst_train_set import SyntheticBurst
from torch.utils.data.dataloader import DataLoader
from utils.metrics import PSNR
from utils.postprocessing_functions import SimplePostProcess
from utils.data_format_utils import convert_dict
from datasets.zurich_raw2rgb_dataset import ZurichRAW2RGB
def main():
zurich_raw2rgb = ZurichRAW2RGB(root='PATH_TO_ZURICH_RAW_TO_RGB', split='test')
dataset = SyntheticBurst(zurich_raw2rgb, burst_size=3, crop_sz=256)
data_loader = DataLoader(dataset, batch_size=2)
# Function to calculate PSNR. Note that the boundary pixels (40 pixels) will be ignored during PSNR computation
psnr_fn = PSNR(boundary_ignore=40)
# Postprocessing function to obtain sRGB images
postprocess_fn = SimplePostProcess(return_np=True)
for d in data_loader:
burst, frame_gt, flow_vectors, meta_info = d
# A simple baseline which upsamples the base image using bilinear upsampling
burst_rgb = burst[:, 0, [0, 1, 3]]
burst_rgb = burst_rgb.view(-1, *burst_rgb.shape[-3:])
burst_rgb = F.interpolate(burst_rgb, scale_factor=8, mode='bilinear')
# Calculate PSNR
score = psnr_fn(burst_rgb, frame_gt)
print('PSNR is {:0.3f}'.format(score))
meta_info = convert_dict(meta_info, burst.shape[0])
# Apply simple post-processing to obtain RGB images
pred_0 = postprocess_fn.process(burst_rgb[0], meta_info[0])
gt_0 = postprocess_fn.process(frame_gt[0], meta_info[0])
pred_0 = cv2.cvtColor(pred_0, cv2.COLOR_RGB2BGR)
gt_0 = cv2.cvtColor(gt_0, cv2.COLOR_RGB2BGR)
# Visualize input, ground truth
cv2.imshow('Input (Demosaicekd + Upsampled)', pred_0)
cv2.imshow('GT', gt_0)
input_key = cv2.waitKey(0)
if input_key == ord('q'):
return
if __name__ == '__main__':
main()