-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_stack_gen.py
191 lines (169 loc) · 7.74 KB
/
train_stack_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from IO.util import *
from SGModel import *
from loader import *
from optim import *
from scorer import *
import argparse
def main():
parser = argparse.ArgumentParser(description='train_stack_gen.py')
## Data options
# Ensembler will be learned on validation file
parser.add_argument('-val_file', required=False, help='Path to the validation file')
# base learner models
parser.add_argument('-save_dir1', required=False, default=None,
help="directory of the checkpointed models")
parser.add_argument('-save_dir2', required=False, default=None,
help="directory of the checkpointed models")
parser.add_argument('-save_dir3', required=False, default=None,
help="directory of the checkpointed models")
parser.add_argument('-save_dir4', required=False, default=None,
help="directory of the checkpointed models")
parser.add_argument('-save_dir5', required=False, default=None,
help="directory of the checkpointed models")
parser.add_argument('-save_dir6', required=False, default=None,
help="directory of the checkpointed models")
parser.add_argument('-save_dir7', required=False, default=None,
help="directory of the checkpointed models")
parser.add_argument('-lang', required=False, default="tr", help='Language (en|tr)')
### Experiment Options
parser.add_argument('-output', '-o', type=str, default='enstrain.log', help='Output log file')
parser.add_argument('-save_dir', default='ensem_model', help='Everything will be saved here')
parser.add_argument('-cross_validation', dest='cross_validation', default=False, action='store_true', help='If True, training_data will be divided into k')
parser.add_argument('-k', type=int, default=5, help='k-fold cross validation')
parser.add_argument('-save_states', type=str, default="true", help='True if you want model files to be saved')
### Optimization options
parser.add_argument('-param_init_type', type=str, default="orthogonal", help='Options are [orthogonal|uniform|xavier_n|xavier_u]')
parser.add_argument('-init_scale', type=float, default=0.05, help='If init type is uniform init weights between -x,+x')
parser.add_argument('-optim', default='adadelta', help='Optimization method. [sgd|adagrad|adadelta|adam]')
parser.add_argument('-grad_clip', type=float, default=1, help='If the norm of the gradient vector exceeds this, renormalize it to have the norm equal to max_grad_norm')
parser.add_argument('-learning_rate', type=float, default=0.01,
help="""Starting learning rate. If adagrad/adadelta/adam is
used, then this is the global learning rate. Recommended
settings: sgd = 1, adagrad = 0.1, adadelta = 1, adam = 0.1""")
parser.add_argument('-decay_rate', type=float, default=0.3)
parser.add_argument('-start_decay_at', type=int, default=450)
parser.add_argument('-patience', type=int, default=3,
help='the number of iterations allowed before decaying the '
'learning rate if there is no improvement on dev set')
### Runtime
parser.add_argument('-epochs', type=int, default=50, help='Maximum number of training epochs')
parser.add_argument('-gpuid', type=int, default=0, help='Id of the GPU to run')
### Ensemble Model parameters
parser.add_argument('-indim', type=int, default=2, help='Number of models to ensemble')
parser.add_argument('-hiddim', type=int, default=2, help='Hidden size')
opt = parser.parse_args()
# check cuda
use_cuda = torch.cuda.is_available()
dtype = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
otype = torch.cuda.LongTensor if use_cuda else torch.LongTensor
opt.dtype = dtype
opt.otype = otype
opt.use_cuda = use_cuda
if use_cuda:
torch.cuda.set_device(opt.gpuid)
train(opt)
def get_models(experiments, devfile):
basel_lrnr_lst = []
data_lst = []
role_to_ix = {}
for model_dir in experiments:
if model_dir==None:
break
with open(os.path.join(model_dir, 'config.pkl'), 'rb') as f:
args = pickle.load(f)
args.save_dir = model_dir
ldr = Loader(args, test_file=devfile, save_dir = model_dir, train=False, test=True)
if len(role_to_ix)==0:
role_to_ix = ldr.role_to_ix
test_data = ldr.getData(ldr.test_data, train=True)
else:
test_data = ldr.getData(ldr.test_data, train=False)
model_path, _ = get_last_model_path(model_dir)
mtest = torch.load(model_path)
if args.use_cuda:
mtest = mtest.cuda()
mtest.eval()
basel_lrnr_lst.append(mtest)
data_lst.append(test_data)
return basel_lrnr_lst,data_lst,role_to_ix
def train(opt):
save_dir = opt.save_dir
try:
os.stat(save_dir)
except:
os.mkdir(save_dir)
fout = open(os.path.join(opt.save_dir, opt.output), "a")
experiments = [opt.save_dir1,opt.save_dir2,opt.save_dir3,opt.save_dir4, \
opt.save_dir5,opt.save_dir6,opt.save_dir7]
devFile = opt.val_file
optim = Optim(
opt.optim, opt.learning_rate, opt.grad_clip,
lr_decay=opt.decay_rate,
patience=opt.patience
)
models, datas, role_to_ix = get_models(experiments, devFile)
# mtrain = EnsModel(opt.indim, len(role_to_ix), opt)
mtrain = SGModelSimple(opt.indim, len(role_to_ix), opt)
if opt.use_cuda:
mtrain = mtrain.cuda()
optim.set_parameters(mtrain.parameters())
criterion = nn.NLLLoss()
if use_cuda:
criterion.cuda()
print "Begin training..."
e = 0
numFolds = opt.k
size = len(datas[0])/numFolds
chunk_inds = [range(i*size,(i+1)*size) for i in xrange(numFolds)]
#prev_val_costs = [10000000]*numFolds
best_val_cost = 10000000
while e <= opt.epochs:
print("Epoch: %d" % (e))
training_cost = 0.0
val_cost = 0.0
k = 2 #e % numFolds
# Calculate training cost
for i in range(len(datas[0])):
# find fold number
if i in chunk_inds[k]:
evalMode = True
else:
evalMode = False
if evalMode:
mtrain.eval()
log_probs = []
mtrain.zero_grad()
# get all predictions from each method
for z, model in enumerate(models):
batch = datas[z][i]
lp = model(batch[0])
log_probs += [lp]
input = torch.stack(log_probs)
if not evalMode:
input = Variable(input.data, requires_grad=True, volatile=False).contiguous()
new_labels = mtrain(input)
gold_labels = datas[0][i][1]
loss = criterion(new_labels, gold_labels.view(-1))
if not evalMode:
training_cost += loss.data[0]
# go backwards and update weights
loss.backward()
optim.step()
else:
val_cost += loss.data[0]
# Calculate development cost
print ("Training Cost: %f" % (training_cost))
print ("Validation Cost: %f" % (val_cost))
fout.write("Epoch: %d\n" % e)
fout.write("Learning rate: %.3f\n" % optim.lr)
fout.write("Train Perplexity: %.3f\n" % training_cost)
fout.write("Valid Perplexity: %.3f\n" % val_cost)
if (val_cost < best_val_cost):
# save the ensemble weights
torch.save(mtrain, '%s/%s-%d.pt' % (save_dir, "ensweight", e))
best_val_cost = val_cost
e+=1
if __name__ == "__main__":
main()