-
Notifications
You must be signed in to change notification settings - Fork 13
/
jupyter.html
260 lines (258 loc) · 109 KB
/
jupyter.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang xml:lang>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>Codebraid with Jupyter kernels</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list[class]{list-style: none;}
ul.task-list li input[type="checkbox"] {
font-size: inherit;
width: 0.8em;
margin: 0 0.8em 0.2em -1.6em;
vertical-align: middle;
}
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<style type="text/css">body {display: block;text-align: left;max-width: 40rem;padding-left: 0.5rem;padding-right: 0.5rem;margin: auto;}pre.numberSource a.sourceLine {position: relative;left: -3em;}pre.numberSource a.sourceLine::before{content: attr(title);position: relative;left: -1em;text-align: right;vertical-align: baseline;border: none;pointer-events: all;display: inline-block;-webkit-touch-callout: none;-webkit-user-select: none;-khtml-user-select: none;-moz-user-select: none;-ms-user-select: none;user-select: none;padding: 0 4px;width: 3em;color: #aaaaaa;}pre.numberSource {margin-left: 2em;border-left: 1px solid #aaaaaa;padding-left: 4px;}div.exampleMarkup:before{content: "Markdown";font-family: monospace;display: block;height: 2em;font-size: 150%;}div.exampleMarkup {padding-top: 0.5em;padding-left: 0.5em;padding-right: 0.5em;margin-top: 2em;margin-bottom: 1em;background-color: honeydew;border-style: solid;border-width: 1px;border-color: limegreen;border-radius: 0.2em;}div.exampleOutput:before{content: "Output";font-family: monospace;display: block;font-size: 150%;}div.exampleOutput {color: black;padding-top: 0.5em;padding-left: 0.5em;padding-right: 0.5em;margin-top: 1em;margin-bottom: 2em;background-color: whitesmoke;border-style: solid;border-width: 1px;border-color: lightgray;border-radius: 0.2em;}div.sourceCode {padding: 0.5em;background-color: aliceblue;border-style: solid;border-width: 1px;border-color: lightskyblue;border-radius: 0.2em;}div.exampleOutput div.sourceCode:before{content: "code";font-family: monospace;display: block;height: 2em;font-weight: bold;font-size: 120%;}pre.stdout:before{content: "stdout";display: block;height: 2em;font-weight: bold;font-size: 120%;}pre.stdout {color: black;padding: 0.5em;background-color: azure;border-style: solid;border-width: 1px;border-color: turquoise;border-radius: 0.2em;padding-left: 0.5em;}code.stdout {color: black;background-color: azure;border-style: solid;border-width: 1px;border-color: turquoise;}pre.stderr:before{content: "stderr";display: block;height: 2em;font-weight: bold;font-size: 120%;}pre.stderr {color: red;padding: 0.5em;background-color: lavenderblush;border-style: solid;border-width: 1px;border-color: pink;border-radius: 0.2em;padding-left: 0.5em;}code.stderr {color: red;background-color: lavenderblush;border-style: solid;border-width: 1px;border-color: pink;}pre.error:before{content: "Error";display: block;height: 2em;font-weight: bold;font-size: 120%;}pre.error {color: red;padding: 0.5em;background-color: lavenderblush;border-style: solid;border-width: 1px;border-color: pink;border-radius: 0.2em;padding-left: 0.5em;}code.error {color: red;background-color: lavenderblush;border-style: solid;border-width: 1px;border-color: pink;}</style>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
</head>
<body>
<header id="title-block-header">
<h1 class="title">Codebraid with Jupyter kernels</h1>
</header>
<p>Using Codebraid with Jupyter kernels rather than the built-in code
execution system is as simple as adding a Codebraid setting to the
document YAML metadata. For example, this document begins with the
following metadata:</p>
<pre><code>---
title: "Codebraid with Jupyter kernels"
codebraid:
jupyter: true
---</code></pre>
<p>In this case, Codebraid automatically selects a kernel based on code
language. It is also possible to select a specific kernel. For
example,</p>
<pre><code>---
codebraid:
jupyter:
kernel: python3
---</code></pre>
<p>This would set a default kernel for the entire document. The kernel
can be overridden for an individual session by setting
<code>jupyter_kernel=<kernel></code> on the first code chunk of a
session.</p>
<h2 id="matplotlib"><a href="https://matplotlib.org/">Matplotlib</a></h2>
<p>Plots are included automatically.</p>
<div class="example">
<div class="exampleMarkup">
<pre><code>```{.python .cb-nb}
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2*np.pi, 1001)
x_tick_values = np.linspace(0, 2*np.pi, 5)
x_tick_labels = ['0', r'$\pi/2$', r'$\pi$', r'$3\pi/2$', r'$2\pi$']
plt.plot(x, np.cos(x), label=r'$\cos(x)$')
plt.plot(x, np.sin(x), label=r'$\sin(x)$')
plt.xticks(x_tick_values, x_tick_labels)
plt.legend(prop={'size': 12})
plt.grid()
```</code></pre>
</div>
<div class="exampleOutput">
<div class="sourceCode" id="cb4" data-startFrom="1"><pre class="sourceCode numberSource python numberLines"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1"></a><span class="op">%</span>matplotlib inline</span>
<span id="cb4-2"><a href="#cb4-2"></a><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</span>
<span id="cb4-3"><a href="#cb4-3"></a><span class="im">import</span> numpy <span class="im">as</span> np</span>
<span id="cb4-4"><a href="#cb4-4"></a>x <span class="op">=</span> np.linspace(<span class="dv">0</span>, <span class="dv">2</span><span class="op">*</span>np.pi, <span class="dv">1001</span>)</span>
<span id="cb4-5"><a href="#cb4-5"></a>x_tick_values <span class="op">=</span> np.linspace(<span class="dv">0</span>, <span class="dv">2</span><span class="op">*</span>np.pi, <span class="dv">5</span>)</span>
<span id="cb4-6"><a href="#cb4-6"></a>x_tick_labels <span class="op">=</span> [<span class="st">'0'</span>, <span class="vs">r'$\pi/2$'</span>, <span class="vs">r'$\pi$'</span>, <span class="vs">r'$3\pi/2$'</span>, <span class="vs">r'$2\pi$'</span>]</span>
<span id="cb4-7"><a href="#cb4-7"></a>plt.plot(x, np.cos(x), label<span class="op">=</span><span class="vs">r'$\cos(x)$'</span>)</span>
<span id="cb4-8"><a href="#cb4-8"></a>plt.plot(x, np.sin(x), label<span class="op">=</span><span class="vs">r'$\sin(x)$'</span>)</span>
<span id="cb4-9"><a href="#cb4-9"></a>plt.xticks(x_tick_values, x_tick_labels)</span>
<span id="cb4-10"><a href="#cb4-10"></a>plt.legend(prop<span class="op">=</span>{<span class="st">'size'</span>: <span class="dv">12</span>})</span>
<span id="cb4-11"><a href="#cb4-11"></a>plt.grid()</span></code></pre></div>
<p><img src="" class="richOutput" /></p>
</div>
</div>
<p>If there are errors or warnings, they are shown as well. Copying this
code into a Jupyter notebook yields the same output.</p>
<div class="example">
<div class="exampleMarkup">
<pre><code>```{.python .cb-nb}
plt.plot(x, np.sin(x)/x, label=r'$\sin(x)/x$')
plt.plot(x, np.cos(np.sin(x)), label=r'$\cos(\sin(x))$')
plt.xticks(x_tick_values, x_tick_labels)
plt.legend(prop={'size': 12})
plt.grid()
```</code></pre>
</div>
<div class="exampleOutput">
<div class="sourceCode" id="cb6" data-startFrom="12"><pre class="sourceCode numberSource python numberLines"><code class="sourceCode python" style="counter-reset: source-line 11;"><span id="cb6-12"><a href="#cb6-12"></a>plt.plot(x, np.sin(x)<span class="op">/</span>x, label<span class="op">=</span><span class="vs">r'$\sin(x)/x$'</span>)</span>
<span id="cb6-13"><a href="#cb6-13"></a>plt.plot(x, np.cos(np.sin(x)), label<span class="op">=</span><span class="vs">r'$\cos(\sin(x))$'</span>)</span>
<span id="cb6-14"><a href="#cb6-14"></a>plt.xticks(x_tick_values, x_tick_labels)</span>
<span id="cb6-15"><a href="#cb6-15"></a>plt.legend(prop<span class="op">=</span>{<span class="st">'size'</span>: <span class="dv">12</span>})</span>
<span id="cb6-16"><a href="#cb6-16"></a>plt.grid()</span></code></pre></div>
<pre class="stderr"><code>~\AppData\Local\Temp\ipykernel_15472\293500280.py:1: RuntimeWarning: invalid value encountered in divide
plt.plot(x, np.sin(x)/x, label=r'$\sin(x)/x$')</code></pre>
<p><img src="" class="richOutput" /></p>
</div>
</div>
<h2 id="sympy"><a href="https://www.sympy.org/">SymPy</a></h2>
<p>SymPy equations are displayed as well. This example runs in a
separate session from the plots above. Multiple Jupyter kernels can be
used within a single document, and multiple independent sessions are
possible per kernel.</p>
<div class="example">
<div class="exampleMarkup">
<pre><code>```{.python .cb-nb session=sympy name=sympy1}
from sympy import *
init_printing(use_latex='mathjax')
x = Symbol('x')
eqn = E**(-x**2)
int_eqn = Integral(eqn, (x, -oo, oo))
int_eqn
```</code></pre>
</div>
<div class="exampleOutput">
<div class="sourceCode" id="cb9" data-startFrom="1"><pre class="sourceCode numberSource python numberLines"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1"></a><span class="im">from</span> sympy <span class="im">import</span> <span class="op">*</span></span>
<span id="cb9-2"><a href="#cb9-2"></a>init_printing(use_latex<span class="op">=</span><span class="st">'mathjax'</span>)</span>
<span id="cb9-3"><a href="#cb9-3"></a>x <span class="op">=</span> Symbol(<span class="st">'x'</span>)</span>
<span id="cb9-4"><a href="#cb9-4"></a>eqn <span class="op">=</span> E<span class="op">**</span>(<span class="op">-</span>x<span class="op">**</span><span class="dv">2</span>)</span>
<span id="cb9-5"><a href="#cb9-5"></a>int_eqn <span class="op">=</span> Integral(eqn, (x, <span class="op">-</span>oo, oo))</span>
<span id="cb9-6"><a href="#cb9-6"></a>int_eqn</span></code></pre></div>
<p><img style="vertical-align:middle" src="" alt="\displaystyle \int\limits_{-\infty}^{\infty} e^{- x^{2}}\, dx" title="\displaystyle \int\limits_{-\infty}^{\infty} e^{- x^{2}}\, dx" class="math inline" /></p>
</div>
</div>
<div class="example">
<div class="exampleMarkup">
<pre><code>```{.python .cb-nb session=sympy name=sympy2}
int_eqn.doit()
```</code></pre>
</div>
<div class="exampleOutput">
<div class="sourceCode" id="cb11" data-startFrom="7"><pre class="sourceCode numberSource python numberLines"><code class="sourceCode python" style="counter-reset: source-line 6;"><span id="cb11-7"><a href="#cb11-7"></a>int_eqn.doit()</span></code></pre></div>
<p><img style="vertical-align:middle" src="" alt="\displaystyle \sqrt{\pi}" title="\displaystyle \sqrt{\pi}" class="math inline" /></p>
</div>
</div>
<p>A Jupyter kernel can provide multiple formats for representing an
object. SymPy typically provides a LaTeX representation, a plain-text
representation, and a PNG representation. By default, Codebraid chooses
display formats in this order of precedence: LaTeX, Markdown, PNG, JPG,
plain. (This can be customized; see <code>rich_output</code> in the
documentation for details.) So Codebraid displays the SymPy math in
LaTeX form. For this to render as nicely as possible in the browser,
Pandoc should be run with one of the flags for rendering math in HTML,
such as <code>--mathjax</code>. For this document, Pandoc was used with
<code>--webtex</code> to convert LaTeX into PNG during the document
build process.</p>
<p><code>cb-paste</code> works with rich output like plots and LaTeX,
just like it normally does with code, stdout, and stderr.</p>
<div class="example">
<div class="exampleMarkup">
<pre><code>```{.cb-paste copy=sympy1+sympy2 show=rich_output}
```</code></pre>
</div>
<div class="exampleOutput">
<p><img style="vertical-align:middle" src="" alt="\displaystyle \int\limits_{-\infty}^{\infty} e^{- x^{2}}\, dx" title="\displaystyle \int\limits_{-\infty}^{\infty} e^{- x^{2}}\, dx" class="math inline" /></p>
<p><img style="vertical-align:middle" src="" alt="\displaystyle \sqrt{\pi}" title="\displaystyle \sqrt{\pi}" class="math inline" /></p>
</div>
</div>
<h2 id="customizing-output">Customizing output</h2>
<p>When working with <code>rich_output</code> formats that have a
<code>text/*</code> mime type, such as LaTeX and Markdown, it is
possible to display the rendered output or show the markup. For example,
using <code>show=rich_output:latex:raw</code> displays the raw
(rendered) LaTeX, while <code>show=rich_output:latex:verbatim</code>
displays the LaTeX markup verbatim.</p>
<div class="example">
<div class="exampleMarkup">
<pre><code>```{.cb-paste copy=sympy1 show=rich_output:latex:raw}
```</code></pre>
</div>
<div class="exampleOutput">
<p><img style="vertical-align:middle" src="" alt="\displaystyle \int\limits_{-\infty}^{\infty} e^{- x^{2}}\, dx" title="\displaystyle \int\limits_{-\infty}^{\infty} e^{- x^{2}}\, dx" class="math inline" /></p>
</div>
</div>
<div class="example">
<div class="exampleMarkup">
<pre><code>```{.cb-paste copy=sympy1 show=rich_output:latex:verbatim}
```</code></pre>
</div>
<div class="exampleOutput">
<div class="sourceCode" id="cb15"><pre class="sourceCode latex"><code class="sourceCode latex"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="ss">$</span><span class="sc">\displaystyle</span><span class="ss"> </span><span class="sc">\int\limits</span><span class="ss">_{-</span><span class="sc">\infty</span><span class="ss">}^{</span><span class="sc">\infty</span><span class="ss">} e^{- x^{2}}</span><span class="sc">\,</span><span class="ss"> dx$</span></span></code></pre></div>
</div>
</div>
</body>
</html>