forked from SuyashLakhotia/TextCategorization
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
139 lines (114 loc) · 5.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import datetime
import numpy as np
import tensorflow as tf
import sklearn.metrics
import data
def train_and_test(sess, model, x_train, y_train, x_test, y_test, learning_rate, batch_size, num_epochs,
dropout_keep_prob, out_dir, evaluate_every=100, checkpoint_every=100, num_checkpoints=5):
print("Writing to {}\n".format(out_dir))
# Define training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(learning_rate)
grads_and_vars = optimizer.compute_gradients(model.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Keep track of gradient values and sparsity
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.summary.merge(grad_summaries)
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", model.loss)
acc_summary = tf.summary.scalar("accuracy", model.accuracy)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Test Summary Writer
test_summary_dir = os.path.join(out_dir, "summaries", "test")
test_summary_writer = tf.summary.FileWriter(test_summary_dir, sess.graph)
# Checkpoint directory & saver
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=num_checkpoints, save_relative_paths=True)
# Initialize all variables
sess.run(tf.global_variables_initializer())
def train_step(x_batch, y_batch):
"""
A single training step.
"""
feed_dict = {
model.input_x: x_batch,
model.input_y: y_batch,
model.train_flag: True,
model.dropout_keep_prob: dropout_keep_prob
}
_, step, summaries, loss, accuracy = sess.run([train_op, global_step, train_summary_op, model.loss,
model.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: Step {}, Loss {:g}, Accuracy {:g}".format(time_str, step, loss, accuracy))
train_summary_writer.add_summary(summaries, step)
def test_step(x_test, y_test, writer=None):
"""
Evaluates model on a test set.
"""
# TODO: Hacky workaround to test model due to OOM errors / fixed batch size.
step = 0
size = x_test.shape[0]
losses = 0
predictions = np.empty(size)
for begin in range(0, size, batch_size):
end = begin + batch_size
end = min([end, size])
x_batch = np.zeros((batch_size, x_test.shape[1]))
x_batch[:end - begin] = x_test[begin:end]
y_batch = np.zeros(batch_size)
y_batch[:end - begin] = y_test[begin:end]
feed_dict = {
model.input_x: x_batch,
model.input_y: y_batch,
model.train_flag: False
}
step, batch_pred, batch_loss = sess.run([global_step, model.predictions, model.loss],
feed_dict)
predictions[begin:end] = batch_pred[:end - begin]
losses += batch_loss
accuracy = sklearn.metrics.accuracy_score(y_test, predictions)
loss = losses * batch_size / size
time_str = datetime.datetime.now().isoformat()
cur_epoch = step * batch_size / len(x_train)
print("{}: Step {}, Epoch {:.2f} / {}, Loss {:g}, Accuracy {:g}".format(time_str, step, cur_epoch,
num_epochs, loss, accuracy))
summary = tf.Summary()
summary.value.add(tag="loss_1", simple_value=loss)
summary.value.add(tag="accuracy_1", simple_value=accuracy)
if writer:
writer.add_summary(summary, step)
return accuracy
# Generate batches
batches = data.batch_iter(list(zip(x_train, y_train)), batch_size, num_epochs)
# Maximum test accuracy
max_accuracy = 0.0
# Training loop
for batch in batches:
x_batch, y_batch = zip(*batch)
train_step(x_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
if current_step % evaluate_every == 0:
print("\nEvaluation:")
accuracy = test_step(x_test, y_test, writer=test_summary_writer)
if accuracy > max_accuracy:
max_accuracy = accuracy
print("Max. Test Accuracy: {:g}".format(max_accuracy))
print("")
if current_step % checkpoint_every == 0:
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
print("Saved model checkpoint to {}\n".format(path))
return max_accuracy