-
Notifications
You must be signed in to change notification settings - Fork 1
/
traffic_main.py
216 lines (174 loc) · 6.47 KB
/
traffic_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import cv2
import numpy as np
import argparse
import imutils
import time
import os
from tracker import Sort
from utils import *
line = [(300, 400), (900, 400)]
counter = 0
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", required=True,
help="path to input video")
ap.add_argument("-o", "--output", required=True,
help="path to output video")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.3,
help="threshold when applyong non-maxima suppression")
args = vars(ap.parse_args())
# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join(["./yolov3", "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join(["./yolov3", "yolov3.weights"])
configPath = os.path.sep.join(["./yolov3", "yolov3.cfg"])
# initialize a list of colors to represent each possible class label
np.random.seed(0)
COLORS = np.random.randint(0, 255, size=(200, 3), dtype="uint8")
# and determine only the *output* layer names that we need from YOLO
print("loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# initialize the video stream, pointer to output video file, and
# frame dimensions
vs = cv2.VideoCapture(args["input"])
writer = None
(W, H) = (None, None)
try:
prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() \
else cv2.CAP_PROP_FRAME_COUNT
total = int(vs.get(prop))
print("[INFO] {} total frames in video".format(total))
# an error occurred while trying to determine the total
# number of frames in the video file
except:
print("[INFO] could not determine # of frames in video")
print("[INFO] no approx. completion time can be provided")
frameIndex = 0
memory = {}
tracker = Sort()
# loop over frames from the video
while True:
# read the next frame from the video
(read, frame) = vs.read()
if not read: #in case the frame was not read means that the video has ended
break
# should be true only for the first frame
if W is None or H is None:
(H, W) = frame.shape[:2]
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
# blob is the preprocessed(scaled, resized) image frame
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob) #giving the model the frame as input
start = time.time()
layerOutputs = net.forward(ln) #model return the outputs
end = time.time()
# initialize our lists of detected bounding boxes, confidences,
# and class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args["confidence"]:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"], args["threshold"])
dets = []
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
dets.append([x, y, x+w, y+h, confidences[i]])
np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})
dets = np.asarray(dets)
tracks = tracker.update(dets)
boxes = []
indexIDs = []
c = []
previous = memory.copy()
memory = {}
for track in tracks:
boxes.append([track[0], track[1], track[2], track[3]])
indexIDs.append(int(track[4]))
memory[indexIDs[-1]] = boxes[-1]
if len(boxes) > 0:
i = int(0)
for box in boxes:
# extract the bounding box coordinates
(x, y) = (int(box[0]), int(box[1]))
(w, h) = (int(box[2]), int(box[3]))
# draw a bounding box rectangle and label on the image
# color = [int(c) for c in COLORS[classIDs[i]]]
# cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
color = [int(c) for c in COLORS[indexIDs[i] % len(COLORS)]]
cv2.rectangle(frame, (x, y), (w, h), color, 2)
if indexIDs[i] in previous:
previous_box = previous[indexIDs[i]]
(x2, y2) = (int(previous_box[0]), int(previous_box[1]))
(w2, h2) = (int(previous_box[2]), int(previous_box[3]))
p0 = (int(x + (w-x)/2), int(y + (h-y)/2))
p1 = (int(x2 + (w2-x2)/2), int(y2 + (h2-y2)/2))
cv2.line(frame, p0, p1, color, 3)
if intersect(p0, p1, line[0], line[1]):
counter += 1
# text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
text = "{}".format(indexIDs[i])
cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
i += 1
# line
cv2.line(frame, line[0], line[1], (0, 255, 255), 5)
# counter
cv2.putText(frame, str(counter), (100,200), cv2.FONT_HERSHEY_DUPLEX, 5.0, (0, 255, 255), 10)
# check if the video writer is None
if writer is None:
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 30,
(frame.shape[1], frame.shape[0]), True)
# write the output frame to disk
writer.write(frame)
# increase frame index
frameIndex += 1
if frameIndex >= 4000:
print("[INFO] cleaning up...")
writer.release()
vs.release()
exit()
# release the file pointers
print("cleaning up...")
writer.release()
vs.release()