You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
To enable large-scale analyses of regulatory logic in model species, we developed DeepArk (https://DeepArk.princeton.edu), a set of deep learning models of the cis-regulatory codes of four widely-studied species: Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, and Mus musculus. DeepArk accurately predicts the presence of thousands of different context-specific regulatory features, including chromatin states, histone marks, and transcription factors. In vivo studies show that DeepArk can predict the regulatory impact of any genomic variant (including rare or not previously observed), and enables the regulatory annotation of understudied model species.
https://doi.org/10.1101/2020.04.23.058040
The text was updated successfully, but these errors were encountered: