Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Deep learning with feature embedding for compound-protein interaction prediction #137

Open
agitter opened this issue Nov 9, 2016 · 0 comments

Comments

@agitter
Copy link
Collaborator

agitter commented Nov 9, 2016

http://doi.org/10.1101/086033

Accurately identifying compound-protein interactions in silico can deepen our understanding of the mechanisms of drug action and significantly facilitate the drug discovery and development process. Traditional similarity-based computational models for compound-protein interaction prediction rarely exploit the latent features from current available large-scale unlabelled compound and protein data, and often limit their usage on relatively small-scale datasets. We propose a new scheme that combines feature embedding (a technique of representation learning) with deep learning for predicting compound-protein interactions. Our method automatically learns the low-dimensional implicit but expressive features for compounds and proteins from the massive amount of unlabelled data. Combining effective feature embedding with powerful deep learning techniques, our method provides a general computational pipeline for accurate compound-protein interaction prediction, even when the interaction knowledge of compounds and proteins is entirely unknown. Evaluations on current large-scale databases of the measured compound-protein affinities, such as ChEMBL and BindingDB, as well as known drug-target interactions from DrugBank have demonstrated the superior prediction performance of our method, and suggested that it can offer a useful tool for drug development and drug repositioning.

Table A1 shows better AUC than AtomNet (#56)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant