You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Accurately identifying compound-protein interactions in silico can deepen our understanding of the mechanisms of drug action and significantly facilitate the drug discovery and development process. Traditional similarity-based computational models for compound-protein interaction prediction rarely exploit the latent features from current available large-scale unlabelled compound and protein data, and often limit their usage on relatively small-scale datasets. We propose a new scheme that combines feature embedding (a technique of representation learning) with deep learning for predicting compound-protein interactions. Our method automatically learns the low-dimensional implicit but expressive features for compounds and proteins from the massive amount of unlabelled data. Combining effective feature embedding with powerful deep learning techniques, our method provides a general computational pipeline for accurate compound-protein interaction prediction, even when the interaction knowledge of compounds and proteins is entirely unknown. Evaluations on current large-scale databases of the measured compound-protein affinities, such as ChEMBL and BindingDB, as well as known drug-target interactions from DrugBank have demonstrated the superior prediction performance of our method, and suggested that it can offer a useful tool for drug development and drug repositioning.
http://doi.org/10.1101/086033
Table A1 shows better AUC than AtomNet (#56)
The text was updated successfully, but these errors were encountered: