
Modeling Student Learning in Large-Scale Online
Settings

Zhaolei Shi, Susan Athey

May 8, 2021

Abstract

The rise of popular mobile education applications produced data where a large num-
ber of students each answers a small subset of questions from a large question bank.
Traditional approaches from the education measurement literature face important lim-
itations in this context where data is large but sparse. We propose models based on
latent factorization and Bayesian variational inference to address these challenges.
Our models retrieve true parameters with greater fidelity than traditional models in
simulations. They also scale well computationally to industrial-size datasets. Com-
pared to traditional specifications, latent factorization models can make more accurate
predictions on the hold-out test set in general. More latent factors and adding hierar-
chical dependence on question attributes contribute to better predictive performance
in lower-frequency content areas. We conclude by describing a real-world application
of our models in personalizing homework assignments. In a future study, we plan to
run experiments with this application to quantify the impact of personalization.

1. Introduction
Online education has been transformed in recent years by the rise of mobile learning. Around

the world, popular mobile learning apps offer students personalized paths of engagement.

In India, the tutoring app Byju’s personalizes students’ learning journeys using a large

knowledge graph (Bhatia, 2017). The US-based Khan Academy offers teachers the option

of personalizing student assignments (Khan Academy, 2020b) and also allows students to

choose their own pathway through practice exercises (Khan Academy, 2020c). Similar to

Khan Academy, 17Zuoye offers choices to teachers and students in China (Sunny Education

Inc., 2018). Together, these three apps account for more than 180 million users (Singh,

1

2020; Khan Academy, 2020a; Sunny Education Inc., 2018), and many other apps offer similar

features to their users.

Choice over one’s learning path is heralded as an essential part of a broader effort to im-

prove learning through personalization. While this movement towards personalized learning

is received with great fanfare in the online education industry, they also created important

challenges for documenting student progress. Compared to the traditional setting of stan-

dardized tests, students are not exposed to the same items in personalized learning paths.

Typically, students are only exposed to a small fraction of items from a large question bank.

Furthermore, new interaction data is generated in real-time and new students and new items

are frequently added to the system.

As an example, in 17Zuoye’s database, there are 1.5 million unique questions exposed to

students in December of 2017. However, among active users, the median student is only

exposed to 398 questions over the same month. The high-frequency user at 95 percentile

only logs 1115 questions in the same period.

Traditionally, education measurement tools based on Item response theory (IRT) are de-

signed for standardized tests with dense data. They are unable to scale to this setting where

the student-item matrix is large and sparse. The literature on linking has procedures for

accommodating data sparsity. But existing methods are ad hoc, heavily dependent on model

specification, and do not computationally scale to large data.

In this paper, we propose new models based on latent factorization and Bayesian variational

inference to address these challenges. We find that our models retrieve true parameters

with greater fidelity than traditional models in small data settings. In addition, our models

also scale well computationally to industrial-size datasets. Finally, compared to the two-

parameter model, our factorization models are able to make more accurate predictions on

the hold-out test set in general. More latent factors and hierarchical dependence on question

2

attributes contribute to better predictive performance in lower-frequency content areas.

In section 8 of our paper, we describe a real-world application of our models. Smart Home-

work uses predictions from our models to make personalized question recommendations to

students that are not too hard nor too easy. We plan to experimentally test the effect of

personalization on student outcomes in a future study.

Section 9 concludes the paper by discussing other potential applications of our models.

2. Related Work
Our methods are inspired by recent advances in inference techniques and machine learning

models that employ user/item factorization. Variational inference techniques allow Bayesian

inference to be recast as an optimization problem, lending it to stochastic optimization

techniques (e.g. stochastic gradient descent) which allows the algorithm to scale to large

datasets. See Blei et al. (2017) for a review. Recent engineering work allows models using

stochastic variational inference to be implemented through off-the-shelf machine learning

packages (Tran et al., 2016; Bingham et al., 2019).

One central idea behind our proposed models is that students and items have latent vector

representations whose dot product influences the probability of answering a question cor-

rectly. This approach draws from recent work on latent factorization that have been applied

to providing online recommendations (Gopalan et al., 2015; Donnelly et al., 2020), analyzing

complementarity and substitutability in consumer choice (Ruiz et al., 2017; Donnelly et al.,

2019), and geographical preferences of restaurant-goers (Athey et al., 2018).

These works draw from the large literature on recommender systems where the standard

approach is to find a try to find an approximation of the full matrix of user-item interactions

using the product of two lower-rank matrices. Nonetheless, these recent works extend the

latent vector representation approach to allow latents to depend on observed characteristics

3

and to account for time-varying effects. We will also incorporate these innovations into our

approach.

Our work is also related to the large literature on linking in educational measurement. Link-

ing refers to the practice that compares student performance across different tests (see Kolen

and Brennan (2004) for a review). Similar to our goal, linking can be interpreted as a way to

overcome sparsity in the combined student-item matrix of different tests that share common

persons or common items (Reardon et al., 2019). A major difference, however, is that the

linking literature is generally focused on the design of tests for particular settings where

researchers control the recruiting of examinees and the administration of exams. As such,

procedures for accommodating data sparsity are mostly ad hoc (e.g. estimating parameters

from test A first, then keeping these parameters fixed when estimating test B) Kolen and

Brennan (2004). There is no prevailing consensus on which methods should be used and

typical works in this literature are also only applicable to certain model specifications. Our

work differs from this literature in the scale of data and the highly sparse nature of our

context and the generality of our approach.

Our work is also related to new literature that casts the model of student learning as solutions

to a predictive problem (see Pardos (2017) for a review). In a purely predictive setting, many

researchers have taken advantage of the recent developments in training deep neural networks

and have applied them to the problem (see Hernández-Blanco et al. (2019) for a review).

As a response to the proliferation of deep learning work, recent papers find that simpler

models with psychological interpretations can behave just as well as deep learning approaches

when structured to fit a few regularities (Khajah et al., 2016; Wilson et al., 2016a,b). Our

approach takes the middle ground where we produce interpretable parameters while using

a factorization approach to flexibly model latent regularities. We are also unique in our

utilization of Bayesian variational inference which allows us to scale to large data while

4

maintaining the flexibility of a Bayesian model to update parameters.

3. Model specification
We use Bayesian variational inference for all parameters in our proposed models. See section

A for an summary of Bayesian variational inference. We place Gaussian posteriors on every

parameter with flexible mean and scale. We also initialize most parameters with Gaussian

priors with mean 0 and a standard deviation of 1. In practice, our optimization methods

also use stochastic gradient descent and various computational optimizations implemented

by Bingham et al. (2019).

3.1. Model 1: Two-Parameter model
Our first model takes the form of the classic Two-Parameter model from the item response

literature. The only difference to traditional models is that we estimate the parameters

through Bayesian variational inference.

In this model θi is the student parameter and αj, βj are question parameters. For the

probability of student i answering question j correctly (Yij = 1), the two-parameter model

is defined as:

P (Yij = 1|θi,αj, βj) =
1

1 + exp(−αj(θi − βj))

3.2. Model 2: Latent factorization model
In this model, we map students and questions into latent vectors (θi,αj) and allow their

inner product to influence the probability of correctness. The model is given by:

P (Yij = 1|θi,αj, βj) =
1

1 + exp(−(θ⊤
i αj − βj))

5

The main benefit of latent factorization in this model is analogous to that of methods com-

monly found in recommendation systems. These types of models allow the parameters to

learn from the structure of the student-question matrix. The richness of the latent fac-

tors allows us to quantify student ability in multi-dimensional ways as the predictions for

correctness will be different for items with different latent factors.

3.3. Model 3: Hierarchical factorization model
In this model, we retain the structure of the latent factorization model. However, we replace

a simple latent vector αj with a concatenation of the latent αj and a latent transformation

of observed question covariates Xj through the transformation matrix Hα. We denote this

concatenated vector as αj ⊕HαXj. Accordingly, we make θi to be the same length as the

result of the concatenation.

The trainable parameters of this model are θi,αj, Hα, βj. The model is given by:

P (Yij = 1|θi,αj, Hα, βj, Xj) =
1

1 + exp(−(θ⊤
i (αj ⊕HαXj)− βj))

By adding a flexible dependency on the observed characteristics of questions, we are allowing

question attributes to influence the probability of correctness directly. Similar to Athey

et al. (2018), this hierarchical structure may allow the model to perform better, especially

for questions that appear in the data with low frequency.

3.4. Software implementation
Our code base1 uses the probabilistic programming package Pyro (Bingham et al., 2019)

for Bayesian stochastic variational inference. Pyro is built on top of Pytorch (Paszke et al.,

2017) and uses data structure, automatic differentiation, and optimizers from the latter.
1Code access is available at https://github.com/henrishi/bm_model.

6

https://github.com/henrishi/bm_model

4. Data collection
We apply our models to data generated on the 17Zuoye platform. The data comes from home-

work assignments and exams in three subject areas–English, math, and Chinese. Records

are logged at the students-question level.

Exam data on the 17Zuoye platform are also tagged with questions attributes. Attributes

include the appropriate grade level of the question. They also include two types of domain

knowledge tags. One system maps questions to competencies. The other maps questions to

skills. These tags are manually labeled by content specialists.

5. Parameter retrieval
In this section, our goal is to compare how well our proposed models and estimation strategies

retrieve true data generating parameters. In addition, we also compare the parameters

retrieved by our approach to those retrieved by a widely-used traditional item response

model package ltm (Rizopoulos, 2006). ltm results are labeled as traditional_2param in

the following figures.

We focus on the two-parameter models for this exercise because the factorization models are

under determined systems and there are multiple parameter arrangements that can yield the

same prediction. ltm produces frequentist point estimates and standard errors. For the sake

of comparison, with our Bayesian models, we take the mean of the posterior distribution as

our estimator and the standard deviation of the posterior distribution as our standard error.

5.1. Simulated dense data
We fit ltm and Bayesian two-parameter model on a small simulated data set. Our data

generating process samples θ and β from a normal distribution with mean 0 and standard

deviation of 1. α is sampled from a normal distribution with mean 1.2 and standard deviation

7

of 0.5 while constrained to be positive. The student-question response data is then drawn

from a Bernoulli distribution where the probability of for a correct answer from student i

and question j is P (Yij = 1) = 1
1+exp(−αj(θi−βj))

. We have 30 questions and 50 students in

the simulated data and every student has a response for every question.

We focus on the estimate for the β parameter since it is the easiest among the three pa-

rameters to estimate. Figure 1 compare the estimates from ltm and Bayesian two-parameter

model alongside the true data-generating parameter. Table 1 presents the correlation (both

linear and ranking correlations) between the estimates and the true parameter values.

We see that the Bayesian two-parameter model is recovering parameters better than ltm

. ltm has large devious estimates for the parameter with the lowest value and large error

ranges for certain parameters with mid-range values. Not only are the point estimates more

devious than Bayesian two-parameter model , but the standard errors are also bigger for ltm

in general. This is especially pronounced for the devious estimates. These deviations hurt

the correlations of the estimates from ltm with the true parameter across all the correlation

metrics we report (Pearson, Kendall, and Spearman).

Stats Pearson correla-
tion (linear)

Kendall correla-
tion (ranking)

Spearman corre-
lation (ranking)

Bayesian two-parameter
model - True parameters 0.95 0.83 0.93
ltm - True parameters 0.91 0.69 0.83

Table 1: Small dense data: correlation stats for beta

8

Figure 1: Small dense data: true and estimated beta

9

5.2. Simulated overlap data with missings
In the current exercise, we generate a simulated dataset where two groups of students share

some overlapping questions but not others. The way missing data is structured is shown in

Figure 2. Our data generating process samples θ from a normal distribution with mean 0

and standard deviation of 1. α is sampled from a normal distribution with mean 1.2 and a

standard deviation of 0.5 while constrained to be positive.

Different from the section 5.1, we sample the β for overlap questions and those only available

for students 1 - 50 from a normal distribution with mean 0 and standard deviation of 1.

However, we sample the β for questions only available for students 51 - 100 from a normal

distribution with mean 0.5 and standard deviation of 0.7. We sampled the β parameters this

way to mimic real-world settings where question difficulty is usually different for different

groups of students. As in 5.1 the student-question response data is then drawn from a

Bernoulli distribution where the probability of a correct answer is a logistic function of the

parameters.

Figure 2: Overlap data missing pattern

10

In this setting, we again compare the performance of the ltm model to the Bayesian two-

parameter model model in estimates of β. We find that the problem of devious estimates is

greatly exacerbated for ltm . Figure 3 shows that the error ranges are excessively large for

some estimates from ltm .

For a more informative figure, we take out the standard error bars of the outliers from the

ltm model and re-plot in Figure 4. We see that while the majority of parameters have similar

under both models, ltm is yielding very devious estimates for items 11, 31, and 37. These

items are not overlapping items (see point map above) and are only taken by a single group

of students.

Bayesian two-parameter model produces point estimates that are much closer to the true

parameters for the parameters that ltm failed to estimate accurately. This corroborates the

Bayesian inference property that the prior distribution serves as a regularizer and allows the

model to be more numerically stable. Finally, we see that Bayesian two-parameter model

again dominates ltm in correlation stats with the true parameters by a large margin in this

data setting.

Stats Pearson correla-
tion (linear)

Kendall correla-
tion (ranking)

Spearman corre-
lation (ranking)

Bayesian two-parameter
model - True parameters 0.96 0.84 0.96
ltm - True parameters 0.41 0.76 0.91

Table 2: Overlap data: correlation stats for beta

11

Figure 3: Overlap data: true and estimated beta

Figure 4: Overlap data: true and estimated beta (zoomed in)

12

6. Computation performance
In this section, we report the computation performance of our proposed models using an

industrial-scale dataset with 88 million responses. The purpose of this section is to show that

our proposed Bayesian models Bayesian two-parameter model and Bayesian factorization

model are computationally tractable for real-world applications. Traditional methods such

as ltm cannot be compared here because they could not handle data of this size. Specifically,

ltm is unable to produce any useful estimates for even very small datasets when sparsity is

at this level. 2

This dataset comes from homework records of 1000 schools over a period of 2 months. In

this dataset, we have 334K questions and 162K students. The overall density of the student-

question matrix is 0.16%. The training of our models terminates when convergence has been

achieved. We define convergence as the change in loss averaged over the last 5 iterations

falls below 0.1% of the change in loss from the first to the second iterations.

In Figure 5 we show the training loss for different model specifications over time. Even though

we adopt stochastic gradient descent for optimization, the overall loss curve is smooth due to

the large amount of data used for training. The more complex models, factorization models

with longer latent vectors, tend to take marginally longer to train. Most models converge

within 30 minutes, the longest model to train took less than 40 minutes (see Figure 6).
2ltm produces numerical errors for even very small samples from this dataset (e.g. a sample of 1000 records).
For example, a random sample of 1000 records translated into a matrix of 639 students by 717 questions.
ltm returns numerical errors for the resulting matrix. One can get ltm to run if the missing entries are
replaced values (e.g. change all missing values to 0), but running ltm on the resulting data takes 16 minutes
to converge. My testing shows that ltm convergence time is roughly O(n2) meaning that doubling the
amount of data takes 4 times as long to converge. This is an exorbitant amount of time considering that
1000 records are a mere 0.00011% of the full dataset with 88 million records.

13

Figure 5: Training loss Figure 6: Convergence time

7. Predictive performance
We compare the prediction performance of our proposed models using a large exam dataset

where we have access to question attributes. We want to compare the performance of all

three models, Bayesian two-parameter model , Bayesian factorization model , and Bayesian

hierarchical factorization model . Since Bayesian hierarchical factorization model needs ques-

tion attributes as inputs, we needed to test our predictive performance on a dataset that has

question attributes. The exams are also higher stakes than typical homework assignments,

as such the data may be more reflective of actual competencies and less noisy as a result.

In this dataset, we have 8.6 million student-question records. There are 3.6k questions and

261k students in total. The overall density of the student-question matrix is 0.92%.

The data were randomly divided into 80% training, 10% validation, and 10% test sets at the

level of student-question interactions. This means data for a single student may appear in

any of the three sets. The same goes for data from a single question. Model training would

stop automatically once convergence is achieved. To get a better metric of the models’

capabilities, we define a stricter convergence criterion – as average per-iteration changes in

loss becoming 0.05% the initial change.

14

We compare Bayesian factorization model against Bayesian two-parameter model in sections

7.1 and 7.2. Having established the superiority of factorization models, we move on to

quantify the gains from adding hierarchical dependency in Bayesian hierarchical factorization

model in section 7.3.

7.1. Overall predictive performance
We first document the overall predictive accuracy for Bayesian two-parameter model and

Bayesian factorization model in Figures 7 and 8. For Bayesian factorization model , we

show results from three models where the length of the latent vectors θ,α are taken to be

3, 5, 10, and 20 respectively. We see that Bayesian factorization model models enjoy higher

AUC in the test set than Bayesian two-parameter model . The F1 statistic tells the same

story where Bayesian factorization model models are superior predictive performance.3 We

note that in all models, training set accuracy is higher than the test set. This is partially

attributable to the sparse nature of the student-question matrix. Some students or questions

may only show up in the training set or the test set, making test set predictions less accurate

than the training set.

Figure 7: Area under the curve (AUC) by
model

Figure 8: F1 statistic by model

3In calculating the F1 statistic, we set the predictive threshold at P > 0.5 for a positive prediction.

15

7.2. Predictive performance by content area
Do factorization models with more latent factors perform better than simpler models on

predictive accuracy in less frequent content areas. In this section, we answer this question

by examining the predictive performance of candidate models by question knowledge labels.

We have 22 knowledge labels in our data. For example, a knowledge label for a math question

may be “arithmetic” or “geometry”, one for an English question may be “English spelling”

or “English pronunciation”.

Figure 9 shows the distribution of student-question records by knowledge labels. From left

to right, we see knowledge labels in descending popularity. We note that some knowledge

labels have significantly lesser data than the most popular knowledge labels.

Figure 9: Count of student-question records by knowledge label

We document the predictive performance of different models across knowledge labels in 10

and 11. We see that confirm that Bayesian factorization model dominates Bayesian two-

parameter model in both AUC and F1 across the knowledge labels. Interestingly, the more

16

complicated factorization models (the 10-factor and 20-factor models) have better perfor-

mance than simpler factorization models (the 3-factor and 5-factor models) in predictive

performance for the less frequent knowledge labels. This suggests that additional latent fac-

tors may have picked up additional heterogeneity useful in predicting less frequent knowledge

labels.

Figure 10: Area under the curve (AUC) by
knowledge label

Figure 11: F1 statistic by knowledge label

7.3. Performance gains from adding hierarchical dependency
Having established the superiority of factorization models over Bayesian two-parameter

model , we move on to quantify the gains from adding a hierarchical dependency in Bayesian

hierarchical factorization model . To make models more comparable, we hold the size of

latent vector constant and compare the Bayesian factorization model model with the same

model that adds different hierarchical dependency.

We use two types of question attributes, one of which is the one-hot vector of knowledge

label described in section 7.2. The other attribute is a multi-hot vector of skills involved in

the question. The attribute is encoded as a multi-hot vector because a single question can

be associated with multiple skills. For our candidate models with hierarchical dependency,

we have freedom in choosing the size of the latent matrix Hα. Following Athey et al. (2018)

17

we pick Hα such that some entries are 0 so that certain types of question attributes can

only contribute to certain parts of the resulting latent vector HαXj. As specified in 3.3,

the latent vector HαXj is a linear combination of these representations. We choose two

model specifications, the first structures Hα such that the knowledge labels and skills each

map to one latent scalar so the resulting HαXj is a length 2 vector. The second is slightly

more complex in that the knowledge labels and skills each map to two latent scalars so the

resulting HαXj is a length 4 vector.

In Figure 12 we compare the factorization model with a length 3 latent vector to a hierarchical

model with the same setup. We see that the hierarchical models outperform the factorization

models slightly overall, but the improvement is more significant for certain low-frequency

knowledge labels. The same is true when we look at factorization model with a length 5

latent vector and hierarchical models with the same set up (see Figure 13).4

Figure 12: Area under the curve (AUC) by
knowledge label (models where latent vector
size = 3)

Figure 13: Area under the curve (AUC) by
knowledge label (models where latent vector
size = 5)

4For the sake of brevity, we focus on AUC for our comparison, but the F1 statistics results are substantively
the same as the AUC results.

18

8. Model application: recommender system for per-

sonalized questions
This section describes a practical application of our proposed models. Our models were put

into use at our partner company to power a recommender system producing personalized

questions for students. The recommender system is one piece of a broader product, Smart

Homework , which combines personalized questions with immediate feedback when the stu-

dent incorrectly answers a question. Figure 14 shows the relationship between the different

components of the system.

The recommender system aims to produce questions that are not too difficult nor too easy.

This aligns with a long line of research in educational psychology stemming from the Zone of

Proximal Development proposed by Vygotsky (1980). The predicted probabilities for student

i getting question j correct is computed using our proposed models from historical data.

Once the probabilities are calculated, the question pool is filtered by taking out questions

that the student has already attempted in the past. Then the pool goes through a ranking

algorithm for each student. The algorithm ranking questions based on a weighted sum of

different factors. The most prominent factor is how close the predicted correctness prob-

ability is to 0.7. Other factors include how recent was the question created, whether the

question includes a picture or a table. The top 10 questions are selected to form the Smart

Homework .

As the student works through her Smart Homework she moves from one question to the next

if she answers correctly. When she answers a question incorrectly, she is taken through a series

of explanations and exercises also known as the learn-practice-explain (LPE) module. The

student is guided through a series of questions and animations that explains one knowledge

point for the triggering question (see Figure 15). The typical time to complete this module

19

is between 2 and 4 minutes. As the student answers the questions, only a correct answer

would allow the student to move forward. A wrong answer would trigger a hint and the

student is directed to answer the question again.

After completing the module, the student is asked to answer another question similar to the

original question she missed. Regardless of whether she answered this question correctly, she

is taken back to other questions in the Smart Homework . Smart Homework exits when the

student has completed every question.

Figure 14: Smart Homework is powered by a recommeder system and immediate feedback

8.1. Batch updates and parameter freeze
We added two features to the implementation of our models to address practical challenges

for building Smart Homework . Firstly, we implemented batch updating of parameters.

Since our models are based on Bayesian inference, making updates to parameter estimates is

very straightforward. Our features load pre-existing parameters into the model in the form of

prior distributions. The prior distributions encapsulate all the information the model learned

from previous data. Thus, instead of re-fitting the model every time new data comes in, the

model needs only to use incremental data to update itself using the prior distributions as its

starting point. This helps reduce the computational costs of keeping models up-to-date. In

20

Figure 15: Question in an LPE module

Figure 16: Explanatory text/audio in an LPE module

practice, our model updates itself with incremental data once a week.

Secondly, we added a feature to allow parameters to be fixed. The fitting of the model will

only alter trainable parameters but not fixed parameters. This allows question parameters,

typically estimated over a large amount of historical data, to remain unchanged in the model

fitting process. This lessens the burden of optimization and can further reduce computational

costs when a large number of questions are involved.

21

8.2. Future experimentation
In a future study, we plan to experimentally test whether Smart Homework improves student

outcomes. Namely, we will assign three versions of Smart Homework as the treatment

condition and compare its effects on student engagement and achievement against a control

group that received a curated (but non-personalized) homework. The three versions of Smart

Homework will be 1) the full version with both personalization and feedback, 2) a partial

version with only personalization, and 3) a partial version with only feedback.

Our partner company is currently (as of May 2021) conducting a pilot of Smart Homework

with 30K student participants. The pilot stage aims to reveal bugs and inefficiencies in

the product’s engineering. The pilot stage also aims to establish an understanding of the

baseline student behaviors including open rate, completion rate, and utilization of feedback.

The main study will proceed after the issues revealed in the pilot stage are addressed.

9. Conclusion
We have shown that latent factorization and hierarchical modeling powered by Bayesian

variational inference can make important gains in modeling student-question interactions

using large datasets from online education. This set of modern approaches perform well in

parameter retrieval and predictive accuracy. They are also numerically stable and can be

applied to industrial-scale datasets with computational ease. Finally, they also allow for

desirable features such as batch updates and parameter freeze to be implemented with ease.

Smart Homework is only one of the many applications that our models can power. Our

models can be used to identify learning gaps. In particular, our factorization approach can

identify content domains where a student is weaker than average. Early warning systems

and remedial content recommendations can be generated based on such information.

Our models can also improve the informational landscape of parents and teachers. One

22

example can be building learning progress dashboards. For this application, the predictions

from our models will be used to derive statistics about student progress. An example of this

is using trained models to make predictions about the average rate at which the student will

get a particular set of pre-selected domain-representative questions correct. This statistic

can be used as an indicator for proficiency.

Finally, applications can make use of the latent parameters the models learned from data.

One such application is the automatic labeling of questions based on the latent parameters

produced by our models. Another application is discovering the preferences of teachers in

terms of which types of question a particular teacher likes to assign.

10. References

References
Athey, S., Blei, D., Donnelly, R., Ruiz, F., and Schmidt, T. (2018). Estimating heterogeneous

consumer preferences for restaurants and travel time using mobile location data. arXiv

preprint arXiv:1801.07826.

Bhatia, R. (2017). A look at how Byju’s personalization engine is driving one-on-one learning

experience.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T.,

Singh, R., Szerlip, P., Horsfall, P., and Goodman, N. D. (2019). Pyro: Deep universal

probabilistic programming. The Journal of Machine Learning Research, 20(1):973–978.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for

statisticians. Journal of the American statistical Association, 112(518):859–877.

Donnelly, R., Kanodia, A., and Morozov, I. (2020). A unified framework for personalizing

product rankings. Available at SSRN 3649342.

23

Donnelly, R., Ruiz, F. R., Blei, D., and Athey, S. (2019). Counterfactual inference for

consumer choice across many product categories. arXiv preprint arXiv:1906.02635.

Gopalan, P., Hofman, J. M., and Blei, D. M. (2015). Scalable recommendation with hierar-

chical poisson factorization.

Hernández-Blanco, A., Herrera-Flores, B., Tomás, D., and Navarro-Colorado, B. (2019). A

systematic review of deep learning approaches to educational data mining. Complexity,

2019.

Khajah, M., Lindsey, R. V., and Mozer, M. C. (2016). How deep is knowledge tracing?

arXiv preprint arXiv:1604.02416.

Khan Academy (2020a). Khan Academy 2019 Annual Report.

Khan Academy (2020b). Using Khan Academy for personalized practice and mastery.

Khan Academy (2020c). Using Khan Academy for self-paced practice.

Kolen, M. J. and Brennan, R. L. (2004). Test equating, scaling, and linking.

Pardos, Z. A. (2017). Big data in education and the models that love them. Current opinion

in behavioral sciences, 18:107–113.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,

A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.

Reardon, S. F., Kalogrides, D., and Ho, A. D. (2019). Validation methods for aggregate-

level test scale linking: A case study mapping school district test score distributions to a

common scale. Journal of Educational and Behavioral Statistics, page 1076998619874089.

Rizopoulos, D. (2006). ltm: An r package for latent variable modeling and item response

theory analyses. Journal of statistical software, 17(5):1–25.

24

Ruiz, F. J., Athey, S., and Blei, D. M. (2017). Shopper: A probabilistic model of consumer

choice with substitutes and complements. arXiv preprint arXiv:1711.03560.

Singh, M. (2020). Indian education startup Byju’s is fundraising at a $10B valuation.

Sunny Education Inc. (2018). 17ZUOYE Raises US$250 Million to Consolidate K-12 Edtech

Market Leader Position in China.

Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., and Blei, D. M. (2016).

Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint

arXiv:1610.09787.

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes.

Harvard university press.

Wilson, K. H., Karklin, Y., Han, B., and Ekanadham, C. (2016a). Back to the basics:

Bayesian extensions of irt outperform neural networks for proficiency estimation. arXiv

preprint arXiv:1604.02336.

Wilson, K. H., Xiong, X., Khajah, M., Lindsey, R. V., Zhao, S., Karklin, Y., Van Inwegen,

E. G., Han, B., Ekanadham, C., Beck, J. E., et al. (2016b). Estimating student proficiency:

Deep learning is not the panacea. In In Neural Information Processing Systems, Workshop

on Machine Learning for Education, page 3.

25

Appendices

A. Bayesian Variational Inference
The main method of inference for parameters in our proposed models is Bayesian variational

inference (see (Blei et al., 2017) for a review). Bayesian variational inference is increasingly

popular in estimation tasks involving large amounts of data. It has superior runtime perfor-

mance compared to traditional Bayesian estimation techniques such as Markov Chain Monte

Carlo. Variational inference has been shown to work well in mean-fields approximation tasks,

but existing methods are less well suited to recover correlations between parameters.

Variational inference proposes a parameterized class of posterior distributions and reduces

the Bayesian inference task to one of optimizing a divergence value between the proposed

posterior and the true posterior. For this inference task, I use the Kullback-Leibler divergence

defined by

λ∗ = argmin
λ

KL(q(z;λ)||p(z|x))

= argmin
λ

Eq(z;λ)[log(q(z;λ))− log(p(z|x))]

where z is the parameter vector of interest, x is the data, and λ is the parameter vector

characterizing the proposed posterior distribution. However, directly optimizing this expres-

sion is not possible since it involves the posterior distribution p(z|x). However, since we can

reformulate the divergence as

KL(q(z;λ)||p(z|x)) = log(p(x))− ELBO(λ)

26

where ELBO(λ) is the evidence lower bound defined by

ELBO(λ) = Eq(z;λ)[log(p(x, z))− log(q(z;λ))]

we can derive gradients to perform optimization on the ELBO.

27

	Introduction
	Related Work
	Model specification
	Model 1: Two-Parameter model
	Model 2: Latent factorization model
	Model 3: Hierarchical factorization model
	Software implementation

	Data collection
	Parameter retrieval
	Simulated dense data
	Simulated overlap data with missings

	Computation performance
	Predictive performance
	Overall predictive performance
	Predictive performance by content area
	Performance gains from adding hierarchical dependency

	Model application: recommender system for personalized questions
	Batch updates and parameter freeze
	Future experimentation

	Conclusion
	References
	Appendices
	Bayesian Variational Inference

