-
Notifications
You must be signed in to change notification settings - Fork 6
/
aggregate_all.m
57 lines (49 loc) · 1.53 KB
/
aggregate_all.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
% Aggregate descriptors per visual word for a set of images
%
% Usage: [va, da, na] = aggregate_all (v, d, n)
%
% d input matrix with descriptors (concatenated for all images)
% v input vector with visual words (concatenated for all images)
% n input vector with number of feature per image
% da aggregated descriptors (concatenated for all images)
% va unique visual words for each image (concatenated for all images)
% na number of features per image after aggregation
%
% Authors: G. Tolias, Y. Avrithis, H. Jegou. 2013.
%
function [va, da, na] = aggregate_all (v, d, n)
cs = [1 cumsum( double (n)) + 1];
%loop over all images, aggregate descriptors for each one
for i = 1:numel(n)
if ~n(i)
na(i) = 0;
va{i} = uint32 ([]);
da{i} = zeros (size (d, 1), 0, 'single');
continue;
end
rng = cs(i):cs(i+1)-1;
[va{i}, da{i}] = aggregate (v(rng), d(:, rng));
na(i) = numel (va{i});
end
va = cell2mat (va);
da = cell2mat (da);
% aggregate descriptors per visual word for a single image
% d descriptors
% v visual words
% da aggregated descriptors
% va unique visual words
function [va, da] = aggregate(v, d)
va = unique(v);
n = numel(va);
da = zeros (size (d, 1), n, 'single');
for i = 1:n
f = find(v==va(i));
if numel(f) == 1
da(:,i) = d(:,f);
else
% compute mean descriptor here, median will be subtracted before binarizing
% that would be equal to the mean residual instead of aggregated residual
% but binarization of each produces the same binary vector
da(:,i) = mean(d(:,f), 2);
end
end