-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathcreate_yolo_caffemodel.py
executable file
·119 lines (113 loc) · 4 KB
/
create_yolo_caffemodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 29 16:10:21 2016
@author: xingw
"""
import sys,os
caffe_root = os.environ["CAFFE_ROOT"]
os.chdir(caffe_root)
print caffe_root
sys.path.insert(0, caffe_root + '/python')
import caffe
import numpy as np
import sys, getopt
def main(argv):
model_filename = ''
yoloweight_filename = ''
caffemodel_filename = ''
try:
opts, args = getopt.getopt(argv, "hm:w:o:")
print opts
except getopt.GetoptError:
print 'create_yolo_caffemodel.py -m <model_file> -w <yoloweight_filename> -o <caffemodel_output>'
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print 'create_yolo_caffemodel.py -m <model_file> -w <yoloweight_filename> -o <caffemodel_output>'
sys.exit()
elif opt == "-m":
model_filename = arg
elif opt == "-w":
yoloweight_filename = arg
elif opt == "-o":
caffemodel_filename = arg
print 'model file is ', model_filename
print 'weight file is ', yoloweight_filename
print 'output caffemodel file is ', caffemodel_filename
net = caffe.Net(model_filename, caffe.TEST)
params = net.params.keys()
# read weights from file and assign to the network
netWeightsInt = np.fromfile(yoloweight_filename, dtype=np.int32)
transFlag = (netWeightsInt[0]>1000 or netWeightsInt[1]>1000) # transpose flag, the first 4 entries are major, minor, revision and net.seen
print transFlag
netWeightsFloat = np.fromfile(yoloweight_filename, dtype=np.float32)
netWeights = netWeightsFloat[4:] # start from the 5th entry, the first 4 entries are major, minor, revision and net.seen
print netWeights.shape
count = 0
for pr in params:
lidx = list(net._layer_names).index(pr)
layer = net.layers[lidx]
print layer,transFlag
if count == netWeights.shape[0] and (layer.type != 'BatchNorm' and layer.type != 'Scale'):
print "WARNING: no weights left for %s" % pr
break
if layer.type == 'Convolution':
print pr+"(conv)"
# bias
if len(net.params[pr]) > 1:
bias_dim = net.params[pr][1].data.shape
else:
bias_dim = (net.params[pr][0].data.shape[0], )
biasSize = np.prod(bias_dim)
conv_bias = np.reshape(netWeights[count:count+biasSize], bias_dim)
if len(net.params[pr]) > 1:
assert(bias_dim == net.params[pr][1].data.shape)
net.params[pr][1].data[...] = conv_bias
conv_bias = None
count = count + biasSize
# batch_norm
next_layer = net.layers[lidx+1]
if next_layer.type == 'BatchNorm':
bn_dims = (3, net.params[pr][0].data.shape[0])
bnSize = np.prod(bn_dims)
batch_norm = np.reshape(netWeights[count:count+bnSize], bn_dims)
count = count + bnSize
# weights
dims = net.params[pr][0].data.shape
weightSize = np.prod(dims)
net.params[pr][0].data[...] = np.reshape(netWeights[count:count+weightSize], dims)
count = count + weightSize
elif layer.type == 'InnerProduct':
print pr+"(fc)"
# bias
biasSize = np.prod(net.params[pr][1].data.shape)
net.params[pr][1].data[...] = np.reshape(netWeights[count:count+biasSize], net.params[pr][1].data.shape)
count = count + biasSize
# weights
dims = net.params[pr][0].data.shape
weightSize = np.prod(dims)
if transFlag:
net.params[pr][0].data[...] = np.reshape(netWeights[count:count+weightSize], (dims[1], dims[0])).transpose()
else:
print dims, count, weightSize, netWeights.shape
net.params[pr][0].data[...] = np.reshape(netWeights[count:count+weightSize], dims)
count = count + weightSize
elif layer.type == 'BatchNorm':
print pr+"(batchnorm)"
net.params[pr][0].data[...] = batch_norm[1] # mean
net.params[pr][1].data[...] = batch_norm[2] # variance
net.params[pr][2].data[...] = 1.0 # scale factor
elif layer.type == 'Scale':
print pr+"(scale)"
net.params[pr][0].data[...] = batch_norm[0] # scale
batch_norm = None
if len(net.params[pr]) > 1:
net.params[pr][1].data[...] = conv_bias # bias
conv_bias = None
else:
print "WARNING: unsupported layer, "+pr
if np.prod(netWeights.shape) != count:
print "ERROR: size mismatch: %d" % count
net.save(caffemodel_filename)
if __name__=='__main__':
main(sys.argv[1:])