forked from Andy97/DeepMLS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepMLS_Generation.py
695 lines (556 loc) · 34.3 KB
/
DeepMLS_Generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
import os
import sys
import numpy as np
import tensorflow as tf
import argparse
from utils import *
import tqdm
sys.path.append("points3d-tf")
from pointsdataset.points_dataset_octreed7 import *
from network_architecture import *
from points3d import get_neighbor_spatial_grid_local_self
from points3d import get_neighbor_spatial_grid_radius_v_voting
parser = argparse.ArgumentParser(description='Point-based Shape Generation')
parser.add_argument('config', type=str, metavar='N', help='config json file')
parser.add_argument('--test', action='store_true', help='forward the test data(inference)')
args = parser.parse_args()
config = config_reader(args.config)
DBL_EPSILON = 1E-22
class param:
def __init__(self, config):
self.train_data = config['train_data']
self.train_batch_size = config['train_batch_size']
self.learning_rate = config['learning_rate']
if('learning_rate_lower_bound' in config):
self.learning_rate_lower_bound = config['learning_rate_lower_bound']
else:
self.learning_rate_lower_bound = 1e-4
self.lr_decay_epochs = config['lr_decay_epochs']
#choose different sdf samples for training(generate on depth-6 grids or depth-7 grids)
self.sdf_data_sources = config['sdf_data_sources']
assert(self.sdf_data_sources == 6 or self.sdf_data_sources == 7)
if(self.sdf_data_sources == 6):
self.max_training_epochs = config['max_training_epochs_d6']
elif(self.sdf_data_sources == 7):
self.max_training_epochs = config['max_training_epochs_d7']
self.exp_folder = config['exp_name']
self.ckpt = config['ckpt']
self.test = args.test
self.gpu = config['gpu']
self.num_of_gpus = len(self.gpu.split(","))
self.num_of_input_points = config['num_of_input_points']
self.num_neighbors_to_search = config['num_neighbors_to_search']
#loss weighting
self.sdf_loss_weight = config['sdf_loss_weight']
self.sdf_grad_loss_weight = config['sdf_grad_loss_weight']
self.geo_reg = config['geo_reg']
self.repulsion_weight = config['repulsion_weight']
self.normal_norm_reg_weight = config['normal_norm_reg_weight']
self.patch_radius_smoothness = config['patch_radius_smoothness']
self.octree_split_loss_weighting = config['octree_split_loss_weighting']
self.weight_decay = config['weight_decay']
#for octree data
self.input_normal_signals = config['input_normal_signals']
if(self.input_normal_signals):
self.channel = 4
else:
self.channel = 3
self.depth = config['octree_depth']
if("decoder_octree_depth" in config):
self.decoder_octree_depth = config['decoder_octree_depth']
else:
self.decoder_octree_depth = 6
print("decoder_octree_depth setting to {}".format(self.decoder_octree_depth))
#predict how many mls points in each non-empty octree leaf node
self.points_per_node = config['points_per_node']
self.constant_radius = config['constant_radius']
assert(self.sdf_data_sources == 6 or self.sdf_data_sources == 7)
if(self.sdf_data_sources == 7):
self.sdf_loss_weight *= 4
self.sdf_samples_each_iter = config['sdf_samples_each_iter']
print("using {} sdf samples for evaluation in each iteration".format(self.sdf_samples_each_iter))
self.node_receptive_field = config['node_receptive_field']
print("node receptive field times: {}".format(self.node_receptive_field))
self.radius_range = config['radius_range']
print("radius range = {}".format(self.radius_range))
if("noise_stddev" in config):
self.noise_stddev = config['noise_stddev']
else:
#our model is normaled to [-1, 1]^3 bounding box with 5% padding
#to achieve same noise level with conv-onet
self.noise_stddev = 0.0095
FLAGS = param(config)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
KNN_PREFERRED = FLAGS.num_neighbors_to_search
print("KNN={}".format(KNN_PREFERRED))
assert(KNN_PREFERRED >= 2)
train_batch_size_gpu = FLAGS.train_batch_size // FLAGS.num_of_gpus
assert(train_batch_size_gpu * FLAGS.num_of_gpus == FLAGS.train_batch_size)
print("utilize {} gpus with total training batch size={}".format(FLAGS.num_of_gpus, FLAGS.train_batch_size))
lr_placeholder = tf.placeholder(tf.float32)
print('=====')
sys.stdout.flush()
#normal unit norm regularization to avoid degenerated normal (should be very gentle)
def normal_unit_norm_regularization(normals, points_segment, points_num):
#input shape [batch_size*n,3]
per_vertex_loss = tf.math.square(tf.reduce_sum(tf.math.square(normals), axis=1) - 1)
loss = tf.segment_sum(per_vertex_loss, points_segment) / tf.cast(points_num, normals.dtype)
return tf.reduce_mean(loss)
def self_regularization_loss(predict_position_matrix, predict_normal_normalized, points_segment, points_num, per_point_squared_ball_radius):
#first get neighbor info and weights
predict_points = tf.concat([tf.reshape(predict_position_matrix, [-1, 3]), tf.reshape(predict_normal_normalized, [-1, 3])], axis=1)
p2p_neighbor = tf.reshape(get_neighbor_spatial_grid_local_self(predict_points, tf.cumsum(points_num), knn=KNN_PREFERRED), [-1,KNN_PREFERRED])
invalid_index_mask = tf.cast(tf.less(p2p_neighbor, 0), dtype=p2p_neighbor.dtype)
#make -1 to 0
p2p_neighbor += invalid_index_mask
p2p_neighbor = tf.expand_dims(p2p_neighbor, axis=-1)
p2p_neighbor = tf.stop_gradient(p2p_neighbor)
p2p_patch_pos = tf.gather_nd(predict_position_matrix, p2p_neighbor)
p2p_patch_normal = tf.gather_nd(predict_normal_normalized, p2p_neighbor)
per_point_radius = tf.math.sqrt(per_point_squared_ball_radius + 1e-19)
p2p_patch_radius = tf.gather_nd(tf.reshape(per_point_radius, [-1]), p2p_neighbor)
p2p_patch_pos_diff = tf.tile(tf.reshape(predict_position_matrix, [-1,1,3]), multiples=[1,KNN_PREFERRED,1]) - p2p_patch_pos
p2p_patch_pos_diff_norm_squared = rowwise_l2_norm_squared(p2p_patch_pos_diff)
p2p_patch_pos_diff_norm = tf.math.sqrt(p2p_patch_pos_diff_norm_squared + 1e-10)
#using dot product [batch_size, n]
p2p_patch_normal_dot = tf.reduce_sum(tf.tile(tf.reshape(predict_normal_normalized, [-1,1,3]),multiples=[1,KNN_PREFERRED,1])*p2p_patch_normal, axis=-1)
p2p_patch_distance = rowwise_l2_norm_squared(p2p_patch_pos_diff)
if(FLAGS.constant_radius):
squared_ball_radius = per_point_squared_ball_radius[0]
else:
squared_ball_radius = tf.gather_nd(per_point_squared_ball_radius, p2p_neighbor)
valid_neighbor_mask = tf.cast(1 - invalid_index_mask, dtype=p2p_patch_distance.dtype)
p2p_patch_distance += squared_ball_radius * (1 - p2p_patch_normal_dot)
#mls weight is stored in matrix with shape=[batch_size*n, KNN]
p2p_mls_weight = tf.math.exp(-p2p_patch_distance / squared_ball_radius)
p2p_mls_weight = p2p_mls_weight*valid_neighbor_mask
#mls weights should also be normalized
#p2p_mls_weight = p2p_mls_weight / tf.tile(tf.reshape(tf.reduce_sum(p2p_mls_weight,axis=-1),[-1,1]),multiples=[1,KNN_PREFERRED])
stop_regularization_weight_gradient = True
if(stop_regularization_weight_gradient):
p2p_mls_weight = tf.stop_gradient(p2p_mls_weight)
p2p_mls_weight_sum = tf.reduce_sum(p2p_mls_weight, axis=-1)
p2p_mls_weight_sum_dim3 = tf.tile(tf.expand_dims(p2p_mls_weight_sum, axis=-1), multiples=[1,3])
Laplacian_radius = tf.math.square(p2p_mls_weight_sum*tf.reshape(per_point_radius, [-1]) - tf.reduce_sum(p2p_mls_weight*p2p_patch_radius, axis=-1)) / tf.math.square(p2p_mls_weight_sum + 1e-6)
#local geometry regularization(planar shape)
#get neighbor point distance to tangent plane in shape[batch_size*n_point, KNN_PREFERRED]
p2p_patch_pos_diff_normal = tf.reduce_sum(p2p_patch_pos_diff*tf.tile(tf.reshape(predict_normal_normalized, [-1, 1, 3]), multiples=[1, KNN_PREFERRED, 1]), axis=-1)
p2p_patch_pos_diff_tangent = p2p_patch_pos_diff - tf.tile(tf.expand_dims(p2p_patch_pos_diff_normal, axis=-1), multiples=[1,1,3])*tf.tile(tf.reshape(predict_normal_normalized, [-1, 1, 3]), multiples=[1, KNN_PREFERRED, 1])
p2p_patch_pos_diff_tangent_norm_squared = rowwise_l2_norm_squared(p2p_patch_pos_diff_tangent)
p2p_patch_pos_diff_tangent_norm = tf.math.sqrt(p2p_patch_pos_diff_tangent_norm_squared + 1e-10)
tangent_distance = tf.math.square(p2p_patch_pos_diff_normal)
if(stop_regularization_weight_gradient):
p2p_mls_weight_plane = tf.stop_gradient(p2p_mls_weight*tf.math.exp(-tangent_distance/squared_ball_radius))
else:
p2p_mls_weight_plane = p2p_mls_weight*tf.math.exp(-tangent_distance/squared_ball_radius)
tangent_distance *= p2p_mls_weight_plane
#-d repulsion
if(True):
#repulsion in tangent direction
repulsion_vec = - p2p_patch_pos_diff_tangent_norm / (octree_mls_points_squared_radius()**0.5)
else:
repulsion_vec = - p2p_patch_pos_diff_norm / (octree_mls_points_squared_radius()**0.5)
#then we get a tensor with shape [\sum(all_mls_points)]
repulsion_force = tf.reduce_mean(p2p_mls_weight * repulsion_vec, axis=-1)
repulsion_force = tf.segment_sum(repulsion_force, points_segment) / tf.cast(points_num, repulsion_force.dtype)
radius_smoothness_loss = tf.segment_sum(Laplacian_radius, points_segment) / tf.cast(points_num, Laplacian_radius.dtype)
local_plane_regularization = tf.segment_sum(tf.reduce_sum(tangent_distance, axis=-1), points_segment) / tf.cast(points_num, repulsion_force.dtype)
repulsion_force = tf.reduce_mean(repulsion_force)
local_plane_regularization = tf.reduce_mean(local_plane_regularization)
radius_smoothness_loss = tf.reduce_mean(radius_smoothness_loss)
return repulsion_force, local_plane_regularization, radius_smoothness_loss
def eval_sdf_from_mls(src_position, target_position, target_normal_normalized, per_point_squared_ball_radius, s2t_neighbor):
invalid_index_mask = tf.cast(tf.less(s2t_neighbor, 0), dtype=s2t_neighbor.dtype)
#make -1 to 0(index -1 indicates invalid neighbor index, which means we cannot find up to K neighbors)
s2t_neighbor += invalid_index_mask
s2t_neighbor = tf.expand_dims(s2t_neighbor, axis=-1)
#get per vertex patch vertices position & normal [batch_size*n, KNN, 3]+[batch_size*n, KNN, 3]
s2t_patch_pos = tf.gather_nd(target_position, s2t_neighbor)
s2t_patch_normal = tf.gather_nd(target_normal_normalized, s2t_neighbor)
#compute mls weights
s2t_patch_pos_diff = tf.tile(tf.reshape(src_position, [-1,1,3]),multiples=[1,KNN_PREFERRED,1]) - s2t_patch_pos
s2t_patch_distance = rowwise_l2_norm_squared(s2t_patch_pos_diff)
valid_neighbor_mask = tf.cast(1 - invalid_index_mask, dtype=s2t_patch_distance.dtype)
#avoid divide by zero error
if(FLAGS.constant_radius):
s2t_mls_weight = -s2t_patch_distance / per_point_squared_ball_radius[0]
else:
s2t_mls_weight = -s2t_patch_distance / tf.gather_nd(tf.reshape(per_point_squared_ball_radius, [-1]), s2t_neighbor)
s2t_mls_weight -= tf.stop_gradient(tf.tile(tf.expand_dims(s2t_mls_weight[:,0], axis=-1), multiples=[1, KNN_PREFERRED]))
#mls weight is stored in matrix with shape=[batch_size*n, KNN]
s2t_mls_weight = s2t_mls_weight*valid_neighbor_mask
s2t_mls_weight = tf.math.exp(s2t_mls_weight)
s2t_mls_weight = s2t_mls_weight*valid_neighbor_mask
#mls weights should also be normalized
s2t_mls_weight = s2t_mls_weight / tf.tile(tf.reshape(tf.reduce_sum(s2t_mls_weight,axis=-1),[-1,1]),multiples=[1,KNN_PREFERRED])
s2t_sdf = tf.reduce_sum(s2t_mls_weight*tf.reduce_sum(s2t_patch_pos_diff*s2t_patch_normal, axis=-1), axis=-1)
#get weighted average patch points
s2t_patch_pos_mean = tf.reduce_sum(tf.tile(tf.expand_dims(s2t_mls_weight, axis=-1),multiples=[1,1,3])*s2t_patch_pos, axis=1)
#get weighted average normal: gradient
s2t_patch_normal_mean = tf.reduce_sum(tf.tile(tf.expand_dims(s2t_mls_weight, axis=-1),multiples=[1,1,3])*s2t_patch_normal, axis=1)
s2t_sdf_grad = tf.math.l2_normalize(s2t_patch_normal_mean, axis=1)
return s2t_sdf_grad, s2t_sdf
def MLS_sdf_Loss_Pack(evaluate_position_matrix, predict_position_matrix, predict_normal_normalized, evaluate_points_num, ps2p_neighbor_index, \
per_point_squared_ball_radius, sdf_precompute):
evaluate_position_matrix = tf.reshape(evaluate_position_matrix, [-1, 3])
sdf_precompute = tf.reshape(sdf_precompute, [-1, 4])
#select valid grid points out of padded data
valid_data_mask = tf.cast(tf.greater(evaluate_position_matrix[:,0], -5), dtype=evaluate_position_matrix.dtype)
predict_sdf_grad, predict_sdf = \
eval_sdf_from_mls(evaluate_position_matrix, predict_position_matrix, predict_normal_normalized, per_point_squared_ball_radius, ps2p_neighbor_index)
valid_data_mask = tf.reshape(valid_data_mask, [-1, evaluate_points_num])
valid_data_mask = tf.stop_gradient(valid_data_mask)
#select the normal for grid points
predict_sdf_grad = tf.reshape(predict_sdf_grad, [-1, evaluate_points_num, 3])
predict_sdf = tf.reshape(predict_sdf, [-1, evaluate_points_num])
#using precomputed sdf value and gradients
gt_sdf = tf.reshape(sdf_precompute[:,0], [-1, evaluate_points_num])
gt_sdf_grad = tf.reshape(sdf_precompute[:,1:], [-1, evaluate_points_num, 3])
gt_sdf = tf.stop_gradient(gt_sdf)
gt_sdf_grad = tf.stop_gradient(tf.nn.l2_normalize(gt_sdf_grad, axis=-1))
#L2 loss of difference between predict sdf and gt sdf (as well as gradients)
grid_sdf_squared_diff = valid_data_mask * tf.math.square(gt_sdf - predict_sdf)
if(False):
#l2 loss
grid_sdf_grad_squared_diff = valid_data_mask*rowwise_l2_norm_squared(gt_sdf_grad - predict_sdf_grad)
else:
#using dot product
grid_sdf_grad_squared_diff = valid_data_mask*(1 - tf.reduce_sum(gt_sdf_grad*predict_sdf_grad, axis=-1))
valid_count = tf.reduce_sum(tf.reshape(valid_data_mask, [-1, evaluate_points_num]), axis=-1)
predict_sdf_diff_loss = tf.reduce_sum(grid_sdf_squared_diff, axis=-1) / valid_count
predict_sdf_grad_loss = tf.reduce_sum(grid_sdf_grad_squared_diff, axis=-1) / valid_count
predict_sdf_diff_loss = tf.reduce_mean(predict_sdf_diff_loss)
predict_sdf_grad_loss = tf.reduce_mean(predict_sdf_grad_loss)
return predict_sdf_diff_loss, predict_sdf_grad_loss
def network_loss(predict_points, points_segment, points_num, per_point_squared_ball_radius, sampled_position_matrix, sdf_precompute, name="network_loss"):
#prepare ingredients for cooking
predict_position_matrix = predict_points[:,:3]
predict_normal_matrix = predict_points[:,3:]
predict_normal_normalized = tf.math.l2_normalize(predict_normal_matrix, axis=1)
loss_dict = {}
train_loss = 0
sampled_points = sampled_position_matrix
evaluated_points_num = tf.cast(tf.shape(sampled_points)[1], tf.int32)
sampled_points = tf.reshape(tf.transpose(sampled_points, perm=[0,2,1]), [-1, evaluated_points_num*3])
#compute neighbor mls points for sdf samples
ps2p_neighbor_index = tf.reshape(get_neighbor_spatial_grid_radius_v_voting(sampled_points, predict_points, tf.cumsum(points_num),\
per_point_squared_ball_radius, knn=KNN_PREFERRED),[-1, KNN_PREFERRED])
if(FLAGS.sdf_loss_weight > DBL_EPSILON or FLAGS.sdf_grad_loss_weight > DBL_EPSILON):
mls_sdf_loss, mls_sdf_grad_loss = MLS_sdf_Loss_Pack(tf.reshape(sampled_position_matrix, [-1,3]), predict_position_matrix, predict_normal_normalized, evaluated_points_num, ps2p_neighbor_index, \
per_point_squared_ball_radius, sdf_precompute=sdf_precompute)
mls_sdf_loss *= FLAGS.sdf_loss_weight
mls_sdf_grad_loss *= FLAGS.sdf_grad_loss_weight
if(FLAGS.sdf_loss_weight > DBL_EPSILON):
loss_dict[name + "_mls_sdf_loss"] = mls_sdf_loss
if(FLAGS.sdf_grad_loss_weight > DBL_EPSILON):
loss_dict[name + "_mls_sdf_grad_loss"] = mls_sdf_grad_loss
train_loss += mls_sdf_loss + mls_sdf_grad_loss
wLop_repulsion_loss, local_plane_regularization, radius_smoothness_loss = \
self_regularization_loss(predict_position_matrix, predict_normal_normalized, points_segment, points_num, per_point_squared_ball_radius)
if(FLAGS.repulsion_weight > DBL_EPSILON):
LOP_regularization_loss = FLAGS.repulsion_weight * wLop_repulsion_loss
train_loss += LOP_regularization_loss
loss_dict[name + '_repulsion'] = LOP_regularization_loss
if(FLAGS.normal_norm_reg_weight > DBL_EPSILON):
normal_unit_norm_loss = FLAGS.normal_norm_reg_weight*normal_unit_norm_regularization(predict_normal_matrix, points_segment, points_num)
loss_dict[name +'_normal_unit_norm_reg'] = normal_unit_norm_loss
train_loss += normal_unit_norm_loss
if(FLAGS.geo_reg > DBL_EPSILON):
local_plane_regularization *= FLAGS.geo_reg
train_loss += local_plane_regularization
loss_dict[name + "_local_plane_regularization"] = local_plane_regularization
if(not FLAGS.constant_radius and FLAGS.patch_radius_smoothness > DBL_EPSILON):
radius_smoothness_loss *= FLAGS.patch_radius_smoothness
train_loss += radius_smoothness_loss
loss_dict["radius_smoothness"] = radius_smoothness_loss
if(FLAGS.weight_decay > DBL_EPSILON):
network_weights_decay_loss = l2_regularizer("ocnn", FLAGS.weight_decay)
loss_dict['network_weight_decay_loss'] = network_weights_decay_loss
train_loss += network_weights_decay_loss
loss_dict[name + "_total_loss"] = train_loss
return train_loss, loss_dict
def train_data_loader():
data_list = points_dataset_AE_multiple_GPU(FLAGS.train_data, FLAGS.train_batch_size, points_num=FLAGS.num_of_input_points, depth=FLAGS.depth, \
gpu_num=FLAGS.num_of_gpus, sample_grid_points_number=FLAGS.sdf_samples_each_iter, data_sources=FLAGS.sdf_data_sources, noise_stddev=FLAGS.noise_stddev)
assert(len(data_list) == FLAGS.num_of_gpus*2+5)
train_record_num = data_list[0]
octree_all_gpu = data_list[1:(FLAGS.num_of_gpus+1)]
gt_octree_all_gpu = data_list[(FLAGS.num_of_gpus+1):(FLAGS.num_of_gpus*2+1)]
points, filenames, sampled_points, sampled_sdf = data_list[(FLAGS.num_of_gpus*2+1):]
points_all_gpu = []
sampled_points_all_gpu = []
sampled_sdf_all_gpu = []
for i in range(FLAGS.num_of_gpus):
points_all_gpu.append(points[i*train_batch_size_gpu:(i+1)*train_batch_size_gpu])
sampled_points_all_gpu.append(sampled_points[i*train_batch_size_gpu:(i+1)*train_batch_size_gpu])
sampled_sdf_all_gpu.append(sampled_sdf[i*train_batch_size_gpu:(i+1)*train_batch_size_gpu])
return train_record_num, octree_all_gpu, gt_octree_all_gpu, points_all_gpu, sampled_points_all_gpu, sampled_sdf_all_gpu, filenames
def train_network():
train_record_num, octree_all_gpu, gt_octree_all_gpu, points_all_gpu, sampled_points_all_gpu, sampled_sdf_all_gpu, filenames = train_data_loader()
loss_all_gpu = []
gradients_all_gpu=[]
solver = tf.train.AdamOptimizer(learning_rate=lr_placeholder)
all_loss_dict = []
for g_id in range(FLAGS.num_of_gpus):
with tf.device('/gpu:{}'.format(g_id)):
with tf.name_scope('GPU_{}'.format(g_id)) as scope:
if(g_id == 0):
g_loss, predict_points, sampled_position_matrix, loss_dict = build_graph_gpu_octree_local(train_batch_size_gpu, octree_all_gpu[g_id], None if points_all_gpu is None else points_all_gpu[g_id],
sampled_points_all_gpu[g_id], sampled_sdf_all_gpu[g_id], reuse=None, gt_octree= gt_octree_all_gpu[g_id])
else:
g_loss, _, _, loss_dict = build_graph_gpu_octree_local(train_batch_size_gpu, octree_all_gpu[g_id], None if points_all_gpu is None else points_all_gpu[g_id],
sampled_points_all_gpu[g_id], sampled_sdf_all_gpu[g_id], reuse=True, gt_octree= gt_octree_all_gpu[g_id])
loss_all_gpu.append(g_loss)
gradients_all_gpu.append(solver.compute_gradients(g_loss))
all_loss_dict.append(loss_dict)
#use last tower statistics to update the moving mean/variance
if(g_id == 0):
batchnorm_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope=scope)
with tf.device('/cpu:0'):
train_summary = tf_summary_from_dict(all_loss_dict, True)
with tf.device('/gpu:0'):
total_loss = sum(loss_all_gpu) / FLAGS.num_of_gpus
with tf.control_dependencies(batchnorm_update_ops):
if(FLAGS.num_of_gpus == 1):
apply_gradient_op = solver.apply_gradients(gradients_all_gpu[0])
else:
grad_avg = average_gradient(gradients_all_gpu)
apply_gradient_op = solver.apply_gradients(grad_avg)
points_all_gpu[0] = tf.transpose(tf.reshape(points_all_gpu[0],[-1, 6, FLAGS.num_of_input_points]), perm=[0,2,1])
return train_record_num, train_summary, total_loss, apply_gradient_op, predict_points, sampled_position_matrix, points_all_gpu[0], filenames
def octree_mls_points_squared_radius():
return 0.25**(FLAGS.decoder_octree_depth - 1) / FLAGS.points_per_node
def build_graph_gpu_octree_local(input_batch_size, octree, points, grid_position, grid_sdf, reuse, is_training=True, gt_octree=None):
assert(gt_octree is not None)
split_loss, split_acc, mls_points, points_segment, octree_node_xyz_valid = \
octree_network_unet(octree, FLAGS.depth, FLAGS.decoder_octree_depth, FLAGS.channel, FLAGS.points_per_node, training=is_training, reuse=reuse, node_receptive_field=FLAGS.node_receptive_field, predict_radius=not FLAGS.constant_radius, radius_range=FLAGS.radius_range, gt_octree=gt_octree)
points_num = tf.cast(tf.segment_sum(tf.ones_like(points_segment, dtype=tf.float64), points_segment), tf.int32)
constant_squared_radius = octree_mls_points_squared_radius()
if(not FLAGS.constant_radius):
per_point_squared_radius = constant_squared_radius* tf.math.square(mls_points[:,6])
mls_points = mls_points[:,:6]
else:
per_point_squared_radius = constant_squared_radius* tf.ones(tf.shape(mls_points)[0])
sampled_position_matrix = tf.reshape(grid_position, [-1, FLAGS.sdf_samples_each_iter, 3])
grid_sdf = tf.reshape(grid_sdf, [-1, FLAGS.sdf_samples_each_iter, 4])
sampled_position_matrix = tf.stop_gradient(sampled_position_matrix)
grid_sdf = tf.stop_gradient(grid_sdf)
final_loss, loss_dict = network_loss(mls_points, points_segment, points_num, per_point_squared_radius, sampled_position_matrix, grid_sdf, name="final_geometry")
loss_dict['split_accuracy'] = tf.add_n(split_acc) / len(split_acc)
loss_dict['octree_split_loss'] = FLAGS.octree_split_loss_weighting*tf.add_n(split_loss)
train_loss = final_loss + FLAGS.octree_split_loss_weighting*tf.add_n(split_loss)
predict_points_list = [mls_points, points_num, per_point_squared_radius]
loss_dict['final_geometry_total_loss'] = train_loss
return train_loss, predict_points_list, sampled_position_matrix, loss_dict
def build_graph_gpu_octree_local_inference(octree, reuse=None, is_training=False, test_batch_size=1):
assert(not is_training)
print("inference using prediction octree")
mls_points, points_segment, octree_node_xyz_valid = octree_network_unet_completion_decode_shape(octree, FLAGS.depth, FLAGS.decoder_octree_depth, FLAGS.channel, FLAGS.points_per_node, test_batch_size, training=is_training, reuse=reuse, node_receptive_field=FLAGS.node_receptive_field, predict_radius=not FLAGS.constant_radius, radius_range=FLAGS.radius_range)
points_num = tf.cast(tf.segment_sum(tf.ones_like(points_segment, dtype=tf.float64), points_segment), tf.int32)
constant_squared_radius = octree_mls_points_squared_radius()
if(not FLAGS.constant_radius):
per_point_squared_radius = constant_squared_radius* tf.math.square(mls_points[:,6])
mls_points = mls_points[:,:6]
else:
per_point_squared_radius = constant_squared_radius* tf.ones(tf.shape(mls_points)[0])
predict_points_list = [mls_points, points_num, per_point_squared_radius]
return predict_points_list
def write_visualization_results(predict_points, sampled_position_matrix, input_points, dir, iter, filenames=None):
final_prediction = predict_points[0]
assert(len(predict_points) == 3)
per_point_radius = np.reshape(predict_points[2], [-1])
per_point_radius = np.split(per_point_radius, np.cumsum(predict_points[1]))
per_point_radius.pop()
final_prediction_ = np.split(np.reshape(final_prediction, [-1]), 6*np.cumsum(predict_points[1]))
final_prediction = [np.reshape(item, [-1,6]) for item in final_prediction_]
final_prediction.pop()
batch_size = len(final_prediction)
assert(len(per_point_radius) == batch_size)
input_points = np.reshape(input_points, [-1, FLAGS.num_of_input_points, 6])
assert(batch_size == input_points.shape[0])
sampled_position_matrix = np.reshape(sampled_position_matrix, [batch_size, -1, 3])
if(filenames is not None):
filename_text_file = open(os.path.join(dir, "filenames_{:06d}.txt".format(iter)), "w")
for train_batch_idx in range(batch_size):
words_arr = filenames[train_batch_idx].decode("utf8")#.split("\\")
#filename_text_file.write("{}\t{}\n".format(words_arr[1], words_arr[3][:-4]))
filename_text_file.write("{}\n".format(words_arr))
filename_text_file.close()
for i in range(batch_size):
np.savetxt(os.path.join(dir, 'input_{:06d}_{:04d}.xyz'.format(iter, i)), input_points[i], fmt='%0.4f')
np.savetxt(os.path.join(dir, 'predict_pc_{:06d}_{:04d}.xyz'.format(iter, i)), final_prediction[i], fmt='%0.4f')
if(iter == 0):
cur_sample_position_matrix = sampled_position_matrix[i]
cur_sample_position_matrix = cur_sample_position_matrix[np.where(cur_sample_position_matrix[:,0] > -50)[0]]
np.savetxt(os.path.join(dir, 'sampled_{:06d}_{:04d}.xyz'.format(iter, i)), cur_sample_position_matrix)
if(per_point_radius is not None):
np.savetxt(os.path.join(dir, 'predict_pc_{:06d}_{:04d}_radius.txt'.format(iter, i)), per_point_radius[i])
def inference_from_inputs():
#placeholder for input pointcloud, should in shape [-1, 3]
input_points = tf.placeholder(tf.float32)
#convert input_points to octree
input_points_str = points_new(input_points, [], input_points, [])
input_octree = octree_batch([points2octree(input_points_str, depth=FLAGS.depth, full_depth=2, node_dis=False, split_label=True)])
mls_points = build_graph_gpu_octree_local_inference(input_octree)
#finish build the graph and next we load checkpoint
gvars = tf.global_variables()
print("{} global variables".format(len(gvars)))
print("{} model parameters total".format(get_num_params()))
ckpt = tf.train.latest_checkpoint(FLAGS.ckpt)
start_iters = 0 if not ckpt else int(ckpt[ckpt.find('iter') + 4:-5]) + 1
if(ckpt):
tf_restore_saver = tf.train.Saver(var_list=gvars, max_to_keep=100)
else:
print("Cannot load checkpoint from {}".format(FLAGS.ckpt))
raise NotImplementedError
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# initialize
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
print("===========================")
print("restore training from iteration %d: %s" %(start_iters, ckpt))
print("===========================")
tf_restore_saver.restore(sess, ckpt)
if(True):
#forward single ShapeNet object
import plyfile
#inference
input_file = "examples/d0fa70e45dee680fa45b742ddc5add59.ply"
assert(os.path.exists(input_file))
plydata = plyfile.PlyData.read(input_file)
noisy_points = np.stack([plydata['vertex']['x'], plydata['vertex']['y'], plydata['vertex']['z']], axis=1)
assert(noisy_points.shape[1] == 3)
#first normalize noisy points to [-0.95, 0.95]
scale = 0.95 / np.abs(noisy_points).max()
noisy_points *= scale
assert(noisy_points.min() >= -1 and noisy_points.max() <= 1)
mls_points_prediction = sess.run(mls_points, feed_dict={input_points:noisy_points})
assert(len(mls_points_prediction) == 3)
mls_points_geometry = mls_points_prediction[0]
mls_points_radius = mls_points_prediction[2]
mls_points_position = mls_points_geometry[:,:3]
mls_points_normal = mls_points_geometry[:,3:] / np.linalg.norm(mls_points_geometry[:,3:], axis=1, keepdims=True)
mls_points_geometry = np.concatenate([mls_points_position, mls_points_normal], axis=1)
shape_scale = np.ones(1)*scale
np.savetxt(input_file+".xyz", mls_points_geometry, fmt="%0.6f")
np.savetxt(input_file+"_radius.txt", mls_points_radius, fmt="%0.6f")
np.savetxt(input_file+"_scale.txt", shape_scale)
return
#Shape Completion of ShapeNet:on ShapeNet 13 classes
import plyfile
if not os.path.exists(FLAGS.exp_folder):
os.mkdir(FLAGS.exp_folder)
test_output_dir = os.path.join(FLAGS.exp_folder, 'test')
if not os.path.exists(test_output_dir): os.makedirs(test_output_dir, exist_ok=True)
#where input pointcloud lies
input_dir = "your_directory/convolutional_occupancy_networks-master/out/pointcloud/shapenet_3plane/generation_pretrained/input"
categories = os.listdir(input_dir)
for cat in categories:
cat_input_dir = os.path.join(input_dir, cat)
filelist = os.listdir(cat_input_dir)
cat_output_dir = os.path.join(test_output_dir, cat)
if(not os.path.exists(cat_output_dir)): os.mkdir(cat_output_dir)
for point_file in filelist:
if(not os.path.isdir(point_file) and point_file.endswith(".ply")):
sample_id = point_file.replace(".ply", "")
print("{}:{}".format(cat, point_file))
#do inference
plydata = plyfile.PlyData.read(os.path.join(cat_input_dir, point_file))
noisy_points = np.stack([plydata['vertex']['x'], plydata['vertex']['y'], plydata['vertex']['z']], axis=1)
assert(noisy_points.shape[1] == 3)
#first normalize noisy points to [-0.95, 0.95]
scale = 0.95 / np.abs(noisy_points).max()
noisy_points *= scale
assert(noisy_points.min() >= -1 and noisy_points.max() <= 1)
mls_points_prediction = sess.run(mls_points, feed_dict={input_points:noisy_points})
assert(len(mls_points_prediction) == 3)
mls_points_geometry = mls_points_prediction[0]
mls_points_radius = mls_points_prediction[2]
mls_points_position = mls_points_geometry[:,:3]
mls_points_normal = mls_points_geometry[:,3:] / np.linalg.norm(mls_points_geometry[:,3:], axis=1, keepdims=True)
mls_points_geometry = np.concatenate([mls_points_position, mls_points_normal], axis=1)
shape_scale = np.ones(1)*scale
np.savetxt(os.path.join(cat_output_dir, sample_id+".xyz"), mls_points_geometry, fmt="%0.6f")
np.savetxt(os.path.join(cat_output_dir, sample_id+"_radius.txt"), mls_points_radius, fmt="%0.6f")
np.savetxt(os.path.join(cat_output_dir, sample_id+"_scale.txt"), shape_scale)
def training_pipeline():
if not os.path.exists(FLAGS.exp_folder):
os.mkdir(FLAGS.exp_folder)
train_record_num, train_summary, total_loss, train_op, predict_points, sampled_position_matrix, input_points, train_filenames = train_network()
# checkpoint
ckpt = tf.train.latest_checkpoint(FLAGS.ckpt)
start_iters = 0 if not ckpt else int(ckpt[ckpt.find('iter') + 4:-5]) + 1
# saver
gvars = tf.global_variables()
print("{} global variables".format(len(gvars)))
print("{} model parameters total".format(get_num_params()))
save_vars = gvars
save_vars_wo_adam = [var for var in gvars if 'Adam' not in var.name]
tf_saver_model = tf.train.Saver(var_list = save_vars_wo_adam, max_to_keep=100)
restore_vars = save_vars_wo_adam
print("restore {} vars".format(len(restore_vars)))
print("save {} vars".format(len(save_vars)))
tf_saver = tf.train.Saver(var_list=save_vars, max_to_keep=100)
if ckpt:
tf_restore_saver = tf.train.Saver(var_list=restore_vars, max_to_keep=100)
#train_record_num = sum(1 for _ in tf.python_io.tf_record_iterator(FLAGS.train_data))
print("train_record_num: {}".format(train_record_num))
iter_100_epoch = int(100.0 * train_record_num / FLAGS.train_batch_size)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# initialize
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
if ckpt:
print("===========================")
print("restore training from iteration %d: %s" %(start_iters, ckpt))
print("===========================")
tf_restore_saver.restore(sess, ckpt)
#folders for training outputs
obj_dir = os.path.join(FLAGS.exp_folder, 'obj')
if not os.path.exists(obj_dir): os.makedirs(obj_dir)
#folders for checkpoint
if not os.path.exists(os.path.join(FLAGS.exp_folder, "model")): os.makedirs(os.path.join(FLAGS.exp_folder, "model"), exist_ok=True)
# tf summary
summary_writer = tf.summary.FileWriter(FLAGS.exp_folder, sess.graph)
lr_decay_step = int(FLAGS.lr_decay_epochs*iter_100_epoch/100.0)
print("lr decay 20% per {} iterations({} epochs)".format(lr_decay_step, FLAGS.lr_decay_epochs))
cur_lr = max(FLAGS.learning_rate_lower_bound, FLAGS.learning_rate*0.8**int(start_iters / lr_decay_step))
print("initial lr setting to {}".format(cur_lr))
max_iter = int(1.0 * FLAGS.max_training_epochs * train_record_num / FLAGS.train_batch_size) + 1
print("max training iterations: {}".format(max_iter))
last_loss = 0
# start training
for i in tqdm.tqdm(range(start_iters, max_iter)):
#cur_epochs = 1.0 * i * FLAGS.train_batch_size / train_record_num
if(i % lr_decay_step == 0):
cur_lr = max(FLAGS.learning_rate_lower_bound, FLAGS.learning_rate*0.8**int(i / lr_decay_step))
print("lr setting to {}".format(cur_lr))
if(i % 5000 == 0):
#write out visualization results
_, train_summary_fetch, train_loss_eval, predict_points_eval, sampled_position_matrix_eval, input_points_fetch, train_filenames_fetch = \
sess.run([train_op, train_summary, total_loss, predict_points, sampled_position_matrix, input_points, train_filenames], feed_dict={lr_placeholder: cur_lr})
write_visualization_results(predict_points_eval, sampled_position_matrix_eval, input_points_fetch, obj_dir, i, filenames=train_filenames_fetch)
else:
_, train_summary_fetch, train_loss_eval = sess.run([train_op, train_summary, total_loss], feed_dict={lr_placeholder: cur_lr})
#write summary to tfevents
summary_writer.add_summary(train_summary_fetch, i)
#save checkpoint
if (i % 5000 == 0):
tf_saver.save(sess, os.path.join(FLAGS.exp_folder, 'model/iter{:06d}.ckpt'.format(i)))
#print logs to stdout
if(i % 500 == 0):
print("iteration {}: train loss = {}".format(i, train_loss_eval))
sys.stdout.flush()
print("Program terminated.")
def main():
if(FLAGS.test):
return inference_from_inputs()
return training_pipeline()
if __name__ == '__main__':
print('Program running...')
main()