forked from Andy97/DeepMLS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
56 lines (50 loc) · 1.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import operator
import functools
import tensorflow as tf
import json
def config_reader(config_path):
json_data=open(config_path).read()
config = json.loads(json_data)
return config
def get_num_params():
num_params = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
num_params += functools.reduce(operator.mul, [dim.value for dim in shape], 1)
return num_params
def average_gradient(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, var in grad_and_vars:
if g is not None:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
if(len(grads) == 0):
continue
grad = tf.concat(grads, axis=0)
grad = tf.reduce_mean(grad, axis=0)
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def tf_summary_from_dict(loss_dict, is_training):
if(is_training):
summary_name = "train_summary"
else:
summary_name = "test_summary"
#create summary
with tf.name_scope(summary_name):
summary_list = []
gpu0_loss_dict = loss_dict[0]
for item in gpu0_loss_dict:
scalar_acc = 0
for i in range(len(loss_dict)):
scalar_acc += loss_dict[i][item]
scalar_acc /= len(loss_dict)
summary_item = tf.summary.scalar(item, scalar_acc)
summary_list.append(summary_item)
return tf.summary.merge(summary_list)
def rowwise_l2_norm_squared(feature):
#assum input with size[n,f] out shape = [n]
return tf.reduce_sum(tf.math.square(feature), axis=-1)