-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconditioned_mnist_edm2.py
200 lines (148 loc) · 7.05 KB
/
conditioned_mnist_edm2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from diffusers import DDPMScheduler, UNet2DModel, DDIMScheduler
from matplotlib import pyplot as plt
from tqdm.auto import tqdm
from edm import *
exp_name = 'edm'
batch_size = 128
n_epochs = 1
# n_epochs = 10
steps = 50
P_mean = -0.4
P_std =1.0
device = 'mps' if torch.backends.mps.is_available() else 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using device: {device}')
# Load the dataset
dataset = torchvision.datasets.MNIST(root="mnist/", train=True, download=True, transform=torchvision.transforms.ToTensor())
# Feed it into a dataloader (batch size 8 here just for demo)
train_dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
# View some examples
x, y = next(iter(train_dataloader))
print('Input shape:', x.shape)
print('Labels:', y)
plt.imsave(exp_name + '_1.png', torchvision.utils.make_grid(x)[0], cmap='Greys')
class ClassConditionedUnet(nn.Module):
def __init__(self, num_classes=10, class_emb_size=4):
super().__init__()
# The embedding layer will map the class label to a vector of size class_emb_size
self.class_emb = nn.Embedding(num_classes, class_emb_size)
# Self.model is an unconditional UNet with extra input channels to accept the conditioning information (the class embedding)
self.model = UNet2DModel(
sample_size=28, # the target image resolution
in_channels=1 + class_emb_size, # Additional input channels for class cond.
out_channels=1, # the number of output channels
layers_per_block=2, # how many ResNet layers to use per UNet block
block_out_channels=(32, 64, 64),
time_embedding_type = 'fourier',
down_block_types=(
"DownBlock2D", # a regular ResNet downsampling block
"AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
"AttnDownBlock2D",
),
up_block_types=(
"AttnUpBlock2D",
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
"UpBlock2D", # a regular ResNet upsampling block
),
)
# Our forward method now takes the class labels as an additional argument
def forward(self, x, t, class_labels):
# Shape of x:
bs, ch, w, h = x.shape
# print(class_labels)
# import pdb; pdb.set_trace()
# class conditioning in right shape to add as additional input channels
class_cond = self.class_emb(class_labels) # Map to embedding dimension
class_cond = class_cond.view(bs, class_cond.shape[1], 1, 1).expand(bs, class_cond.shape[1], w, h)
# x is shape (bs, 1, 28, 28) and class_cond is now (bs, 4, 28, 28)
# Net input is now x and class cond concatenated together along dimension 1
net_input = torch.cat((x, class_cond), 1) # (bs, 5, 28, 28)
# import pdb; pdb.set_trace()
# Feed this to the UNet alongside the timestep and return the prediction
return self.model(net_input, t).sample # (bs, 1, 28, 28)
# # ori scheduler
# noise_scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule='squaredcos_cap_v2')
# ddim_scheduler = DDIMScheduler(num_train_timesteps=1000, beta_schedule='squaredcos_cap_v2')
#craftsman version
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule='scaled_linear', beta_start = 0.00085, beta_end = 0.012, variance_type = "fixed_small", clip_sample = False)
ddim_scheduler = DDIMScheduler(num_train_timesteps= 1000, beta_start= 0.00085,beta_end=0.012, beta_schedule= "scaled_linear", clip_sample= False, set_alpha_to_one= False, steps_offset= 1)
#@markdown Training loop (10 Epochs):
# Redefining the dataloader to set the batch size higher than the demo of 8
train_dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# train_dataloader = DataLoader(dataset, batch_size=1024, shuffle=True)
# How many runs through the data should we do?
# Our network
net = ClassConditionedUnet()
denoiser_model = EDMPrecond(net).to(device)
edm_loss = EDM2Loss(P_mean, P_std)
# Our loss function
# loss_fn = nn.MSELoss()
# The optimizer
opt = torch.optim.Adam(net.parameters(), lr=1e-3)
# Keeping a record of the losses for later viewing
losses = []
# The training loop
for epoch in range(n_epochs):
for x, y in tqdm(train_dataloader):
# Get some data and prepare the corrupted version
x = x.to(device) * 2 - 1 # Data on the GPU (mapped to (-1, 1))
y = y.to(device)
# noise = torch.randn_like(x)
# timesteps = torch.randint(0, 999, (x.shape[0],)).long().to(device)
# noisy_x = noise_scheduler.add_noise(x, noise, timesteps)
# # Get the model prediction
# pred = net(noisy_x, timesteps, y) # Note that we pass in the labels y
# Calculate the loss
# loss = loss_fn(pred, noise) # How close is the output to the noise
loss = edm_loss(denoiser_model, x, y)
# import pdb; pdb.set_trace()
loss = loss.mean()
print('loss: ', loss)
# Backprop and update the params:
opt.zero_grad()
loss.backward()
opt.step()
# Store the loss for later
losses.append(loss.item())
# Print out the average of the last 100 loss values to get an idea of progress:
avg_loss = sum(losses[-100:])/100
print(f'Finished epoch {epoch}. Average of the last 100 loss values: {avg_loss:05f}')
# View the loss curve
plt.plot(losses)
plt.savefig(exp_name + '_losses.png')
print('training finished, begin sampling')
#@markdown Sampling some different digits:
# Prepare random x to start from, plus some desired labels y
x = torch.randn(80, 1, 28, 28).to(device)
y = torch.tensor([[i]*8 for i in range(10)]).flatten().to(device)
# Sampling loop
for i, t in tqdm(enumerate(noise_scheduler.timesteps)):
# Get model pred
with torch.no_grad():
residual = net(x, t, y) # Again, note that we pass in our labels y
# Update sample with step
x = noise_scheduler.step(residual, t, x).prev_sample
# Show the results
fig, ax = plt.subplots(1, 1, figsize=(12, 12))
plt.imsave(exp_name + '_ddpm_sampled.png', torchvision.utils.make_grid(x.detach().cpu().clip(-1, 1), nrow=8)[0], cmap='Greys')
# Prepare random x to start from, plus some desired labels y
x = torch.randn(80, 1, 28, 28).to(device)
y = torch.tensor([[i]*8 for i in range(10)]).flatten().to(device)
#ddim sampling
# import pdb; pdb.set_trace()
# ddim_scheduler.set_timesteps(steps)
# timesteps = ddim_scheduler.timesteps.to(device)
# for i, t in enumerate(tqdm(timesteps, desc="DDIM Sampling:", leave=False)):
# # Get model pred
# with torch.no_grad():
# residual = net(x, t, y) # Again, note that we pass in our labels y
# # Update sample with step
# x = ddim_scheduler.step(residual, t, x).prev_sample
x = edm_sampler(denoiser_model, x, y, guidance=1)
# Show the results
fig, ax = plt.subplots(1, 1, figsize=(12, 12))
plt.imsave(exp_name + '_sampled.png', torchvision.utils.make_grid(x.detach().cpu().clip(-1, 1), nrow=8)[0], cmap='Greys')