-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathEnKF.m
32 lines (27 loc) · 982 Bytes
/
EnKF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
function ensemb = EnKF(ensemb)
% Ensemble Kalman filter. Updated forecast and analysis states using
% observation and ensemble Kalman filter.
%
% Input fields
% R : measurement error (sigma).
% Fstates : forecast states. 1 X n matrix, n = number of state
% Astates : analysis states. 1 X n matrix.
% obs : observation states. Scaler.
% func : model operator, from current state to next state.
%
% Output the same structue with updated Fstates and Astates, as well as
% estimation of model error (C).
%% Update forecast states
N = numel(ensemb.Fstates);
Acell = num2cell(ensemb.Astates);
ensemb.Fstates = cellfun(ensemb.func,Acell);
%% Estimate model error
E = mean(ensemb.Fstates);
A = ensemb.Fstates-E;
ensemb.C = A*A.'/(N-1);
%% Perturb observation with measurement eror
D = ones(1,N)*ensemb.obs + normrnd(0,ensemb.R,[1,N]);
%% Kalman gain
K = ensemb.C/(ensemb.C+ensemb.R);
%% Update analysis states
ensemb.Astates = ensemb.Fstates + K*(D-ensemb.Fstates);