-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathResNet3D.py
154 lines (119 loc) · 4.89 KB
/
ResNet3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import math
from functools import partial
from .Shift3D import Shift3DLayer
from .utils import *
def conv3x3x3(in_planes, out_planes, stride=1):
# 3x3x3 convolution with padding
return nn.Conv3d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False)
def downsample_basic_block(x, planes, stride):
out = F.avg_pool3d(x, kernel_size=1, stride=stride)
zero_pads = torch.Tensor(
out.size(0), planes - out.size(1), out.size(2), out.size(3),
out.size(4)).zero_()
if isinstance(out.data, torch.cuda.FloatTensor):
zero_pads = zero_pads.cuda()
out = Variable(torch.cat([out.data, zero_pads], dim=1))
return out
class BasicBlock(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm3d(planes, momentum = 0.01)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3x3(planes, planes)
self.bn2 = nn.BatchNorm3d(planes, momentum = 0.01)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
# https://github.com/okankop/Efficient-3DCNNs/blob/master/models/resnet.py
# Revised to accept Shift3D layer
class ResNet3D(nn.Module):
def __init__(self,block, layers, shift3d=False, shift_chance=0.25, batch_shift=False, decay_iterations = 0, sample_size = WIDTH,
sample_duration = DEPTH, shortcut_type='B', num_classes=2):
self.inplanes = 64
super(ResNet3D, self).__init__()
self.conv1 = nn.Conv3d(1,64,kernel_size=5,stride=(2, 2, 2),padding=(2, 2, 2),bias=False)
self.bn1 = nn.BatchNorm3d(64, momentum = 0.01)
self.relu = nn.ReLU(inplace=False) #inplace must be false for shift3d
self.shift3d = shift3d
if shift3d:
self.shift3d_layer = Shift3DLayer(shift_chance=shift_chance, batch_shift=batch_shift, decay_iterations=decay_iterations)
self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type, stride=(2, 2, 2))
self.layer2 = self._make_layer(block, 128, layers[1], shortcut_type, stride=(2, 2, 2))
self.layer3 = self._make_layer(block, 256, layers[2], shortcut_type, stride=(2, 2, 2))
self.layer4 = self._make_layer(block, 512, layers[3], shortcut_type, stride=(2, 2, 2))
last_duration = int(math.ceil(sample_duration / 64))
last_size = int(math.ceil(sample_size / 64))
self.avgpool = nn.AvgPool3d((last_duration, last_size, last_size), stride=1)
self.fc = nn.Linear(512, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv3d):
m.weight = nn.init.kaiming_normal(m.weight)
# m.weight.data.fill_(1)
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, shortcut_type, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes:
if shortcut_type == 'A':
downsample = partial(
downsample_basic_block,
planes=planes,
stride=stride)
else:
downsample = nn.Sequential(
nn.Conv3d(
self.inplanes,
planes,
kernel_size=1,
stride=stride,
bias=False), nn.BatchNorm3d(planes, momentum = 0.01))
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
if self.shift3d and self.training:
x = self.shift3d_layer(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet3d34(**kwargs):
"""Constructs a ResNet-34 3D model.
"""
model = ResNet3D(BasicBlock, [3, 4, 6, 3], **kwargs)
return model